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““The U. S. Air Force is developing satellite-borne sensors
to enable autonomous navigation of spacecraft in the near future.
This study compares the observatioas from several medium-accuracy
space sensors, such as the existing telescopic space sextant, with
those of future matrix-type sensors. The large field of view of
matrix sensors will allow them to determine the earth horizon to
approximately an order of magnitude better than current infrared
sensors by observing atmospheric refraction of stellar light. This
horizon determination will give the matrix sensors an accuracy of
less than 1 km. The limiting factor in earth-horiz.n determination
is the modeling of atmospheric refraction effecfs. For high-
accuracy requirements (100 meters or less], the Global Positioning
System (GPS) offers the only near-term solution. A relative
navigation technique using range and doppler data i{s proposed for
autonomous navigation of the GPS satellites. The navigation

accuracy of this technique i3 evaluated ULy consider covariance
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onboard Sequentially Partitioned Algorithm. The algorithm i1s stable

and for the GPS system pro "mces in-plane acecuracy of U0 meters over

twenty  days. However, out~of-plane motion 1is shown to be

unobservable in the GPS~-to~GPS tracking mode, and errors of up to

1.5 km over 60 days are experienced. For this reason, a

supplemental transmitter on the ground or in a different orbit is

recommended.
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% CHAPTER 1

3 INTRODUCTION
3

]

1.1 Autonomous Satellite Navigation History

Self-contained or autonomous navigation of spacecraft was
a desired capability almost at the very beginning or space flight.
The earliest references to space navigation discuss its necessity
for manned missions and interplanetary travel [Henry, 1963; Gersten
and Schwarzbein, 1963], but unmanned earth satellites have continued
to be tracked and controlled by worldwide tracking networks. These
networks, set up by both the United States Air Force and Lhe
National Aeronautics and Space Administration (NASA) are complex,
expensive, redundant and require large operation and mainternance

budgets.

Studies of artificial satellite autonomous navigation
sensors and techniques have been performed since the late 1963
decade by Brogan and Lemay [1968], Gura, et al. [1971] and Lemay, et
al. [1973], but sensor dcvelopment has lagged far behind the
analyses and only recently have serious moves been taken to build
and test sensors that will enable transfer of the navigation
function from the earth-baszd system to each active soacecraft.
NASA, driven primarily by cost considerations, is planning to use
the Tracking and Data Relay Satellite System (TDRSS) as an orbital

tracking station, with data processing still to be performed on the
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ground. The Department of Defense (DOD), however. js more concerned
with vulnerability, as stated by Robert S$. Cooper, head of the
Defense Advanced Research Projects Agency [EXEEEEQE Week. 1982], and
with the overseas ground stations being the most vulnerable links in
the tracking and control system, DOD is funding spaceborne sensor
systems of varying degrees of autonomy to enable the onboard
performance of the navigation function.

Previous autonomous satellite navigation investigations
involved several different types of sensors. Lemay, et al. [1973]
thoroughly investigated the use of both known and unknown landmark
trackers, horizon scanners, satellite-to-satellite measurements of
angles, range and range-rate, star-horjzon sensors and space sextant
measurements, Their investigation, which was based upon state-of-
the-art sensor precision in 1973, indicated that lanamark trackers
had the potential for yielding the best navigation performance.
Development of landmark trackers, however, never achieved the
potential expected of them, and optical star trackers, along with
the Clobal Positioning System [GPS], are the onboard navigation
systems currently under development.

It is interesting to note that USSR interest in autonomous
navigation started somewhat parallel to but behind the United
States. Tne paper by Zybin i1969] proposes using star-planet
observations in a deterministic orbit determination scheme similar

to Gersten [1963]. On-orbit testing of space sextants occurred
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early in both manned space programs. Experiments were performed on
both the Semini [Ballentine. 1967] and Skylab [Walsh and Ferrguson,
1975] spacecrafit, as well as in the Soviet manned spacecraft

[Nikoloev, et al., 1975].

1.2 Air Force Spacecraft Navigation Requirements

The new sensors under development promise navigation
accuracies that may be competitive with ground-based systems in
meeting most current and projected Air Force spacecraft position
inowledge requirements. Discussions with Air Force System fProgram
Offices [SPO's] during the summer of 1981 led to a list of accuracy
requirements whose one-sigma values spanned the range from less than
10 m to "ore than 37 km [Tapley and Ferguson, 1983].

To meet these requirements, some of the program o1lices
are investigating the use of current sensor data, while others will
reanuire new seasors of the type being developed. The Defense
Meteorological Support Program (DMSP) is tyoical of those
investigating their current sensor capabilities. The DMSP Primary
Attitude Determination System (PADS] consists of a fixed star
tracker pair, a sun sensor and earth horizon sensors. When all
sensors are in operation, the attitude error sigma is 36 arcsec and
the system outputs attitude errors and a unit vector pointing to the
center of the earth, This wunit vector can be wutilized by a
navigation filter to perform the autonomous navigation function.

Current sensor data studies have a goal of 1 nm accuracy with
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atmospheric radiance, "ia3 medeling and filter design being the
areas needing improvements. Since the program navigation
requirement is .5 nm (930 meters). improvements tc the sensors or
new horizon sensors are necessary. Other programs, whose accuracy
requirements are in the 100 m-1 km range, are also candidates for
the optical star trackers being built and tested under Space
Division auspices.

Some satellite programs, however, require position
knowledge to 50 m or iess and will thus necessitate the development
of extremely precise onbonard measurement equipment. The GPS program
is not only one of those that requires very accurate navigation
information but is the c¢nly navigation system proposed whose
position accuracies meet the requirements of other high-precision
users. It's main limitation from an autonomous system viewpoint is
that it is dependent upon a global tracking system. User satellites
are thus dependent upon a navigation system that is still vulnerable
to ground system failures and cutages.

The GPS Joint Program Office (JPO) has performed limited
studies on two autonomous navigation schemes, one using range and
integrated doppler measurements from other GPS vehicles via the
crogs-link antenna and the other involving precise horizon data from
a new optical sensor., The GPS satellite relative range study by Liu
[1981] indicates that although in-track errors grow to 30 meters,

10 meter accuracy can be maintained in the user line-of-sight
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i direction for Phase 1 vehicles involved in active satellite~to-
satellite criacking for 14 days following one day of ground tracking.
Earth geopotential resonance terms are the largest error sources,
and improved values for C,,, s,., C3p and S3, are required. The

study did not address the Phase III constellation, long-term

stability, clock variation or stability of an onboard solution
process.

The optical sensor proposed for GPS measures the earth's
horizon by atmospheric dispersion of star images, and is named SHAD
for Stellar Horizon by Atmospheric Dispersion. The current sensor
design 1is intended for mid-course missile guidance and is expected
to result in a position error sigma of 65 m [Quell, 1981]. so it
would require approximately an order of magnitude improvement to be

; used by GPS. Earth atmospheric density modeling, as discussed 1in

Section 2.8, 1is a major factor limiting the accuracy achievable by

SHAD.

1.3 Purpose of the Study

While some Air Force satellite SPO's are actively

- investigating the capability of current and future onboard sensors,
several others are either independently soliciting proposals for new

sensors or are waiting for sensors to be developed to the

operational stage before making a decision on the route they will

take to satisfy autonomous navigation requirements. There is a need

to assess the capabilities of sensors now under development, match
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them to these proyram requirements and identify needed improvements
so that decisiuns can be made as to the direction future sensor
development should take. The purpose of this study, then, is to
agsess navigation accuracies using these new sensors so they may be
matched to existing and planned satellite missions. Since some
users have requirements that can only be met by GPS, an
investigation of improved GPS autonomy is also undertaken.

The report consists of a description of the new
technology, a comparison of the two main types of optical sensors
under development: the Space Sextant and the matrix star sensor,
and an analysis of GPS autonomous navigation using satellite-to-
satellite range and integrated doppier measurements. The GPS
section contains a relative geometry description, a description of
relevant error sources, ephemeris model selection using consider
analysis, orbit and clock simulation descriptions and analysis of a
proposed local estimation algorithm. Conclusions concerning the

various sensors are drawn and recommendations are made.

1.4 Description of Sensors

Five of the sensors now under development yield data which
hold high promise for current autonomous navigation applications.
These include the Space Sextant Autonomous Navigation and Attitude
Reference System (SS/ANARS), the Mulctimission Attitude Determination
and Autonomous Navigation System (MADAN) and the Digistar and

STELLAR star sensors. The measurement from each of these sensors is
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baszed on the sensor's ability to measure accurately the angle
between a star and a near calestial body or the angle between two
stars. One additional 3ensor, the GPSPAC, uses range and/or
integrated doppler measurements from the Global Positioning System
satellites as data for the navigation function, The advertised
characteristics as determined by the design specifications for these
sensors are given in Table 1.1. Operational characteristics of each

sensor are described in further detail in the subsequent discussion.

TABLE 1.1. ADVERTISED SYSTEM CHARACTERISTICS

Type 1c Sensor Weight Power Operational
Precision Date
Space Sextant .5 arcsec 65 lbs 50 watts 1985
MADAN 2 arcsec 50 1bs 50 watts 1987
Digistar .5-2 arcsec 30-60 lbs 30-60 watts 1985 (2 arcsec)
STELLAR 1-30 arcsec 40 lbs 40 watts
GPSPAC Pos: 18 m B3 1ibs U5 watts 1987

Att: .02°-.6° (71-2143 arcsec)

1.4.1 Space Sextant

The Space Sextant Autonomous Navigation and Attitude
Reference System is being developed by Martin-Marietta. A flight
demonstration model has been built and ground-tested, and an
operational version may be ready by 1985. The test model weighs
approximately 220 lbs and consumes 280 watts, but the operational
model proposed for the Mini-HALO program is advertised to weigh 65

l1bs and consume 50 watts of power [Martin-Marietta. 1980].




The sextar!l. 13 composed of two cassegrain  tracking
telescopes mouited on a 3 degree-of-freedom inertial platform (Fig.
1.1). In che navigation mode, cne telescope tracks the bright 1limd
¢r  the moon, while the other tracks stars visible to the system. A
timing wheel located between the telesccpes rotates a prism at 9 rps
such that optical signals are injected into each telescope parallel
to the rezeived starlight. The angle between tne two lines of sight
is then determined to < .5 arcsec by measuring the time interval

between the optical signal reception at each telescope's detector.

1.4.2 MADAN

The Multimission Attitude Determination and Autonomous
Navigation system is a solid-state matrix star sensor being
developed by TRW (F;g. 1.2). The heart of the sensor is a matrix
charge-coupled device (CCD) developed by Hughes. The matrix
contains four arrays of 324 x 324 elements ¢r pixels, each 1 mil x 1
mil (5.4 ym x 25.4 wm) [TRW, 1979]. A  Schmidt-Cassegrain
reflecting telescope with a 7.1® x 7.1° field of view produces an
intentionaliy defocused image on the array and a sensor data
processor determines the centroid of the image to approximately 5
percent of a pixel width with respect to the sensor line of sight.
Since each pixel subtends 30.4 sec, a 5 percent error gives 10 < 2
arcsec. Two such sensors can be used to determine spacecraft
attitude, but the star sensor, along with its data processor, is not

capable of autonomous navigation without an earth horizon sensor.
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Figure 1.1. Space Sextant
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It may be possibie to use the star sensor as an earth horizon sensor

Wy b TG TS < TR EVY
s 3
- - hal "

by measuring a star position as it is refracted by the atmosphere,

but the current design does not include the necessary software., The

use of this sensor for horizon determination is discussed further in

Section 2.4.1.

% A MADAN test model is being fabricated by TRW, with bench
. |

% test results expected in 1983. An operational version could be
54

£ flown by 1987.

1.4.3 Digistar

Digistar {8 another solid-state matrix star sensor being
built by Ball Aerospace Systems Division (Fig. 1.3). It employs a
256 x 256 pixel charge injection device (CID) developed by the
General Electric Corporation. Each pixel element is 20 x 20 um.
The refracting telescop® produces an image on the focal plane
matrix, and an interpolation scheme is used to arrive at an image
centroid with a precision of less than 1 percent of pixel size in a
field of view of 2.93° x 2.93°. Since each pixel subtends 41
arcsec, the resulting star position precision 1is expected to be
about .U arcsec. Testing of a breadboard model currently
demonstrates a 1o tracking error of .8 arcsec [Ball Aerospace,

1981]. According to a Ball representative, an operational model

could fly in 1985,
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1.4 4 STELLAR

The Jet Propulsion Laboratory {JPL) has been developing
CCl-based star sensors since 1974 [Salomon. 1981]. The project is
named STELLAR for Star Trecker for Economical Long Life Attitude
Reference. To date. two large array trackers have been developed.
The Video Inertial Pointing (VIP) tracker employs a Fairchild-
produced CCD having a 190 x 244 element array with a 1.9° x 2.5°
field~of-view, 36 arcsec pixels and 2.2 arcsec resolution. This
instrument flew on a balloon payload in June 1979,

The Extended Life Attitude Control System (ELACS) tracker
uses a 380 x 488 element CCD built by Fairchild and has a 10° x 32°
field-of-view. The resolution is 12 arcsec along the short axis and
30 arcsec along the long axis. Even though it is less accurate than
the VIP tracker, it aliows commandable fields-of-view, s0 several
operating modes, such as star field mapping, star acquisition and
star tracking, are available from one instrument.

The JPL goal is to have three instruments: a wide-field
star tracker, 1like ELACS, a general purpose tracker and an
instrument pointing sensor with accuracies varying from 30 to 1

arcsec. According to Salomon [1981], each tracker would weigh

between 8 and 13 1b and draw 10 watts of power.

1.4,5 GPSPAC
A spaceborne Global Position System receiver (GPSPAC) is

under development by Magnavox, among others. Utilizing the GPS
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ranging signal, position errors of 18 m (10) are expected for user
satellites Dbeiow GPS altitude (20197 km) in Phase III operation.
This system is dependent upon the GPS spacecraft launch schedule but
ig expected to be operational in 1987.

User satellite attitude can be determined from GPS-derived
interferometric information obtained by using two widely separated
antennas and a suitably modified receiver. This information is
obtained separately from the navigation data and requires additional
receiver design. Attitude determination accuracy using this
technique 1is only on the order of .02° to .6° [Ellis and Creswell,

1978].

1.5 Sensor Comparison

The relative advantages and disadvantages of each sensor,
from the operational point of view, can be summarized as follows:
A. Space Sextant
Advantages:
1. High-accuracy angle measurement
2. Self-gimbaled
3. Early operational date
Disadvantages:
1, Mechanical gimbals, possibly reducing reliability

2. Moon-star angle is less gensitive to ordbit dynamiecs than
an earth-scar angle.

B. Solid-state Matrix Sensor (MADAN, Digistar and STELLAR)
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Advantages.
1. Smal’, so0lid state
2. Modular
i, fan view several stars simultaneously
Disadvantages:
1. Fixed to spacecraft with no automatic scan capability
2. No existing comparable earth horizon sensor
3. Later operational date for a navigation system
GPS Receiver
Advantages: High positional accuracy
Disadvantages:
1. Dependent on ground tracking system

2. Low attitude precision
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CHAPTER 2

OPTICAL SENSOR NAVIGATION ACCURACIES

2.1 Introduction

Since the various instruments described in the previous
sectfbns wi1ll provide different navigation information, conversions
must be made from sensor precision to spacecraft position error to
compare the navigation accuracies of the three types of instruments.
For the GPSPAC, simulations of the ranging system errors coupled
with GPS ephemeris and clock errors produce a user position error of
less than 18 meters during periods when at least four satellites
with acceptable geometriczl displacement are visible [Fuchs, et al.,
1977]. Since earth-orbiting satellites will continuously see at
least four GPS vehicles in Phase 111, this accuracy is assumed for
all users. Semi~autonomous maintenance of GPS ephemerides is
analyzed in later chapters.

The Space Sextant has been analyzed in detail by the
Martin-Marietta Corporation [1975], and a navigation accuracy of
300 meters is predicted for a .5 arcsec sensor. The matrix sensors
have not been analyzed in detail nor have the comparisons between
them and the Space Sextant been made. Such a comparison will be a
primary objective of this study. Since the expected navigation
accuracy of the Space Sextant is known, the information content of

the star-moon measurement can be compared with that of the star-

16
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earth horizon observations produced by the matrix sensors, and the

resulting relacive accuracies will be indicative of matrix sensor

performance.

2.2 Optical Satellite Navigation Covariance Program

To compare the navigation accuracies of the two types of
optical sensors involved in this study, a computer program for
performing covariance propagation and analysis was written. Thia
program assumes only zero-mean Gaussian measurement errors are
present and propagate the satellite state error covariance using the
following Extended Kalman Filter (EKF) update scheme., The nonlinear

model for the system is represented by
x = F(x(t),t) (2.1)

where the state vector, X(t), has components measured in an inertial

frame:
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and where the fouc,ce function, F(X

%, (t)
xs(t)
x6(t)

é(rW! -Hx, (t)

'sz (t)

T
—ux3(t)

r

|
Li(t)J ) r3
3

3

(t).t),

~

+P_(t)

-~

+ Py(t)

~

+ Pz(t)

18

is defined as:

(2.3)

-

where

n = gravitation parameter of earth = 398603.2 km3/secz,

r = the magnitude of the satellite position vector,

1/2
r[t) = <x$ + xg + x§>

P(t) is any perturbing force.

In this analysis, P(t) = 0 , and the resulting orbit is two-body;
however, the program can simulate any desired forces acting on the
spacecraft by changing the derivative subroutine.

Between planned observation times, the state is propagated
by either closed-form analytic integration for the two-body case or
by a Runge-Kutta (RKN) or Adams predictor-corrector numerical
integrator. The state error covariance matrix, P, is given at the

start of the analysis as Po at to and 1is propagated between

observation times by

-y
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Plt + at) - ¢(t + at,t) P(t) ¢T(t + at,t) (2.4)

where o(t + df.t) » the state transition matrix, is approximated

from a second-order Taylor series solution to
o(r,t) = Alt) o Lot): oft,t) = 1 (2.5)

where

A(r] - aF!x!T!.T!

3X(T]
The approximate solution for ¢(t + At,t] is given by

Murata [1982] as

o(t + at,t) = 1+ a{t)ar + % [at) + a%(¢)] ac? (2.6)
where
Afe) - Ale Azz - Aft) (2.7)

At each simulated observation time, tk , the covariance
matrix 1is updated by the contritution of the type of observation

assumed to be available at that time.

2.2.1 Measurement Model

At each nwnrcasurement epoch, the covariance matrix is

updated, and symmetry is enforced by the following algorithms:
P=(1I-KH)F (2.8)

P = ;— (P + PT) (2.9)
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where := is defined as "repiaced by."
Once the H matrix is computed at each observation epoch,

the Kalman gain, K, is given by

K = PHY (#PHT + R)™ (2.10)

where R = 02

for the sensor simulated at ¢ . A complete
derivation of Kalman continuous-discrete update and propagation
algorithms {s given by Jazwinski [1970], pp. 195-200.

For the purposes of the analysis conducted here, the
covariance matrix is rotated from its original coordinate system,
the earth-centered inertial {ECI), to an inertial coordinate system
residing at the spacecraft, aligned with the instantaneous radial,
tangential, normal (RTN) system. Figure 2.1 shows these coordinate
systems and the measurement geometry simulated. The diagonal
elements of P then form a 10 error ellipsoid about the estimated

ECI

transformation matrix from ECI to RTN coordinates, then

spacecraft position. If [‘rRTN.] is a 3 x 3 orthogonal

T
RTN RTN
Tger O Tger O
P a .
RTN 7RIN Pecr LRIN (2.11)
0 ECI 0 ECI

and the ellipsoid axes defined by the position sigmas

172
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1/2

(2.12)

1/2

are ﬁelated to the sensor-orbit geometry and are usually aligned
with the largest axis along the T unit vector of the RTN system.

The velocity error ellipsoid given by

1/2

- -
J = P
vrad RTNMM

_ - 1/2
0 = | p (2.13)
vtan RTNSS

B 172
o, =] Py |
Vnor RTN66

defines an instantaneous inertial velocity error 1lccated at the
satellite but does not 1include terms associated with the angular
velocity and acceleration of the RTN coordinate system itself.

The measurement sensitivity matrix, H , relates the
difference between the measured and computed observations,
y = ¥-Y* | using an a priori estimate of the trajectory, to the
er~or In the state x = X - X¥. The covariance matrix F represents
the uncertainty in the estimate of x. The structure of the
measurement se...:*ivity matrix, H , will depend on the individual

observation types. For the cases considered, H 1is given by:

A e A AR A——
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3 measurement {t_ )~
H = [ K (2.14)

2.2.1.1 Star-Horizon Geometry

For a star-horizon observation, Fig. 2.2 shows the

geometry, with vectors and angles defined as follows. Let

Xy
Vo X5 (2.15)
X
-
and
r = |F|
rh = ray tangent altitude(RTA) trg
8§ = unit vector to star, defined by line-of-sight of sensor
in inertial coordinates
Then,
r
a = sin"(—9> (2.16)
r
b = cos“(« L §> (2.17)
r
ob=b-a (2.18)

and the first three components of the measurement matrix are

g AT
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r r3 r3
while the second three components are
Hy56... =0 (2.20)

2.2.1.2 Horizon Sensor Geometry

For a horizon observation, the simulated star direction is
assumed to be in the plane defined by the center of the earth, the
spacecraft and the line-of-sight of the same star sensor simulated
in the star-horizon observation. The unit vector 8§ is replaced by
a unit vector pointing to the intersection of this plane and the
surface of the earth's atmosphere as given by an input tangent

height. The new value for § |is

8§ := —1' | sin(a - sinfo r .
(o) ‘:1 (a) 8 (ob) r} (2.21)

and the partial derivative matrix, H , is the same as aoove.

2.2.1.3 Star-Moon Geometry

A star-moon cbservation is defined as shown in Fig. 2.3,

with the observation being the acute angle between the lunar limb
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nearest a star and that star.
4| 8P r
\ ob = cos™! 2] - sin | =2 (2.22)
and
a s = (2 1-1 ¢ T
s Dm /2 3 (§ pm)pm
B3 1-{—3 e 3
m m m
) r 2 |-1/2 ro\
) 2) % (2.23)
Pm p
m
Hy 5 6 = 0 (2.24)

2.3 SLar-Moon Sensor Performance

The space sextant uses star-moon angles for input co a
navigation filter because the earth horizon cannot be accurately
determined by current infra-red and visible sensor technologies.
Since the sextant telescopes can gimbal freely with respect to each
other and with respect to the spacecraft, one can normally track the
bright lunar 1limb while the other locks on stars visible to the
system. This allows a more precise angle measurement than 1Is
possible with a current earth horizon sensor. In the situations of
lunar occultation by the earth or sun-moon interference, the sensor

tracks the earth horizon as a temporary replacement for the moon.

The sensor's independence of motion gives it the advantage of being

bt e
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abie to track known cargets, even when the spacecraft is unstable in
attituae and also frees the navigation solution from attitude
errors.

The space sextant type of obtservation was simulated by
computing the angle between unjt vectors to the nearest lunar limb
and stars at t45° from the spacecraft T unit vector in the 1local
horizon plane. As shown in Figure 2.4, the resulting navigation
error exhibits a large twice-per-orbit periodic effect. This is due
to the orbit-moon geometry and, for various initial moon-ascending
node angles, exhibits varying amplitudes. The case with minimum
periodic amplitude (0 = 73.u°) was then wused for the star-moon
accuracy curves in the main report to maintain as much consistency
as possible in the error vs, period plots.

This twice-per-orbit fluctuation is due to the particular
simulation geometry used -~ two fixed star directions relative to
the spacecraft. To more closely simulate the Space Sextant scanning
scheme, as described by Martin-Marietta [1981], another mode was
programmed in which the star unit vector was changed randomly
between 0° and 360° in right ascension and between -90° and +90° in
declination for each consecutive simulated measurement. The results
(Fig. 2.5] show a random pattern in positicn error after convergence
of the filter. This random behavior would adversely affect the
consistency of results when various period orbits are considered, so

the original sensor configuration with @ = 73.4° was retained in the
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analysis.

2.4 Star-Horizon Sensor Performance

The solid-state modular sensors (MADAN, Digistar and
STELLAR) are designed to be rigidly fixed to the spacecraft and,

3 therefore, cannot observe the lunar limb except when it happens to

fall in the field of view. Optical celestial navigation from a
spacecraft, however, requires the measurement of angles between a
star and a body that appears to move as the vehicle moves in its
orbit. This rules out star-star angles except for attitude
information. One sensor must observe a near celestial body and, for
earth-oriented spacecraft, the earth horizon is the only feasible
target for fixed sensors. Also, since the earth horizon appears to
move 360° during each orbit while the moon appears to move
2 tan"(r/Rm) (12.6 deg for sync orbit), the earth-star angle is
much more sensitive to orbit dynamics. Furthermore, since the earth
horizon 1is normally closer to the spacecraft than the moon horizon,
the earth-horizon based measurement should give a higher navigation
accuracy for angle measurements of comparable precision.

For near-term conventional horizon sensors, the state of
the art is about .02° [Fowier, 1981]. Figure 2.6 shows the results
obtained in the covariance analysis for both star-earth and star-
moon sensors. The covariance analysis program propagates the state
covariance matrix and updates this matrix with information obtained

from each type of observation at fixed-time intervals. The
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resulting RSS position sigma from the diagonal terms of the
covariance is plotted versus time expressed in orbits, with the
solid line representing a one-sigma error for star-horizon
measurements obtained from a 2 arcsec star sensor and a .02 deg
horizpn sensor. The dashed line represents the one-sigma error for
a Space Sextant measuring star-moon 1limb angles to a .5 arcsec
precision. For the star-earth measurement, the earth's horizon Iis
sensed, and for a star-moon angle, the moon's bright limb is sensed.
Two horizon sensors with .02° accuracy capability, when used with
two fixed star sensors with a precision of 2 arcsec, would provide a
navigation accuracy of 2500 meters for a satellite in a 12-hour
circular orbit. As seen in Fig. 2.6, this is more than a factor of
10 worse than that achievable by a space sextant with a precision of
.5 arcsec. Thus, to take advantage of the improved measurement-
orbit geometry, the solid state star sensors must be coupled with

horizon sensors of at 1least an order of magnitude improvement:

0.002° or T arcsec.

2.4.1 Star Refraction Measurement of Earth Horizon

Fortunately, the new star sensors themselves offer a means
by which earth-horizon sensing may be improved. As starlight passes
through the atmosphere, it is refracted and dispersed. The angles
of refraction and dispersion depend upon ray tangent altitude (RTA).
the point where a starlight ray is nearest to the earth's surface as

shown in Figure 2.7, and atmospheric conditions, but the measurement
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of either of these angles offer the possibility of a more accurately
& defined horizon. The Office of Naval Research {s presently

investigating the feasibility of using the dispersion sensor SHAD,

. wmy

for mid-course ICBM guidance, with an expected 1o error of 65 meters
[Quell, 1981], while Chambers [1981] of the Aerospaze Corporation
proposes measuring refraction using the unique capabilities of °

MADAN. Since this sensor has a wide field of view (7.1° square), a

g ST i g

minimum of two stars can be observed continuously. By measuring the
angle between two stars before and during the time one of them 1is

refracted by the atmosphere due to spacecraft motion, the refraction

Tk A L

angle inferred from this changing geometry defines the height of

starlight tangency to the atmosphere (RTA). According to Chambers,

a 3 arcsec knowledge of this refraction angle, obtained by 1looking
at two stars to a preclsion of 2 arcsec each, gives a tangent height
uncertainty of 150 meters for a tangent height of 25 km. Since this
uncertainty depends upon a priori knowledge of the properties of the
atmosphere and sensor and not on orbit altitude, the resulting
apparent horizon determination precision varies from 16.7 aresec feor
a 90-minute orbit to .72 arcsec for a geosynchronous orhit.
Figure 2.8 from Chambers [1981] shows that the refraction curve has
a fairly consistent slope for all models c¢onsidered such that a
given refraction error produces the same tangent height error for
each curve. 1In addition, this tangent helght error is only a

function of refraction error, and refraction error is a function of

rast o e e e o R ————— % R 4o
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the cptical mezsurement device, not orbit altitude.

When the solid-state sensors are used as horizon sensors,
they can either be combined with other similar devices to provide
star-horizon data or they can be employed alone, with a priéri
Knowledge of the angular position of the stars being observed, to
give the angle between the horizon and the center of the earth.
Fig. 2.9 shows the navigation accuracies expected from two star-
horizon sensors, two horizon sensors and two star-moon sensors in a

12-hour circular orbit with the following instrument precision:

Sensor Instrument Precision (10)

Star-horizon sensors

Star: 2 arcsec
Horizon: 3 arcsec
Horizon sensors 3 arcsec
Star-moon sensors .5 arcsec

Note that, even with a four~ to six-fold decrease in observation
precision, the star-horizon and horizon sensor navigation errors are
two to sever times smaller than those predicted for the star-moon
sensor, If the horizon sensors are an order of magnitude worse
(10 = 30 arcsec), the star-horizon and horizon sensor navigation

errors grow to 350 m and 230 m, respectively.

2.4,2 Star-Horizon Performance vs. Sensor Orientation

To determine the optimum sensor configuration for two star

sensors, the sensor bore-sight direction was first moved in azimuth
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in the local horizon plane and then in elevation for a 99-minute and
a 12-hour orbit. Figures 2.10 and 2.11 show the effect of azimuth
in the 90-minute and 12-hour orbits, while Figures 2.12 and 2.13
examine the effedt of elevation in the two cases.

. From the figures it 1is seen that. for high-altitude
orbits, sensors located between 45° and 50° azimuth and as low an
elevation as possible give the best results. The lowest elevation
possible coincides with the horizon sensors themselves; thus, the
horizon sensors alone produce the best navigation accuracy in the
absence of attitude errors. While the 90-minute orbit was fairly
insensitive to azimuth changes, it seems to be more sensitive to
elevation angle than does the 12-hour orbit. Interestingly, a very
high elevation star sensor gives improved performance in low orbit,
and in fact, the test program that led to PADS had a star sensor
pair mounted 60° from the local horizon, one at 0° azimuth and the
other at 180° [Honeywell, 1973].

Since performance over the period range 90 min to 5 days
is of interest to this study, the star sensor configuration selected
for comparison with the other optical measurements in this analysis
was one with star sensors located on the spacecraft in the local

horizon plane, + 45° from the T unit vector,

2.5 Optical Sensor Performance vs, Circular Orbit Period

Fig. 2.14 through 2.15 show the performance of the optical

sensors as a functior of altitude or perfod. While the star-horizon
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sensor shows an error growth with altitude due to the changing
geometry, the space sextant exhitits an almost constant error. This
is due to the distance of the moon being so much greater than the
satellite radius. The horizon sensor shows the interesting feature
of a sharp drop in position uncertainty followed by nearly constant
performarce as the altitude increases. For a constant sensor error,
the qavigation performance would be expected to degrade with
increasing altitude, as for the star-horizon sensor. However, the
horizon sensor's apparent precision due to a constant 150 meter
tangent height uncertainty (Oh). falls rapidly at low-to-medium
altitudes and then drops more slowly as altitude increases (Fig.

2.16). Note that the 1increase in apparent sensor precision
parallels the navigation performance seen in Fig., 2.,14b, i.e., as
altitude increases from near-earth orbits, the rapid improvement in
apparent sensor precision leads directly to  corresponding

improvements in navigation accuracy. These results show that if the

earth horizon can be tracked to o, = 150 m, two horizon sensors can

provide much better navigation accuracies than the space sextant.

If the horizon detection is accurate to only 1500 m, the resulting
navigation error increases to 234-350m for a 12-hour orbit,

depending upon the mode used (horizon only or star-horizon).

2.6 Sensor Performance on an Elliptical Orbit

Figure 2,17 shows the performance of the three measurement

types applied to a 12-hour elliptical orbit (e = .75) with sensors

|
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s: at * U45° azimuth and 0° elevation. The horizon sensor must be
"

; gimbaled, however, and the gimbal mechanism would introduce some
- error in the horizon definition.

F

Comparing these results to Figure 2.9, it is seen that the

g

relative order of sensor performance stays the same when applied to

an elliptic orbit, but the error magnitude grows, especially for the

TR

star-horizon sensor pair, This error growth could be reduced by

*

DUL LA

selecting a lower elevation sensor direction as altitude is
increased, but that would lead to a much more complicated system
unless the star and horizon sensor pair were mounted on the same
gimbaled platform. If that were the case, the relative orientation

: of the two sensors would remain the same, and gimbal inaccuracies

could probably be reduced considerably.

2,7 Comparative Sensor Performance for Circular Orbits

The results of this analysis are summarized in Table 2.1,
where the matrix sensors are operated in either the star-horizon
angle mode or as horizon sensors alone. The navigation accuracies

are representative of orbits above 300-minute period.
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TABLE 2.1

PREDIC D NAVIGATION ERROR DUE TO SENSOR ERROR

Sersor Sensor Precision Navigation Error
(arcsec) {meters)
Space Sextant .5 150
Matrix Sensors
Star-Horizon 2 L0-180
1 19-90
05 9"”5
Horizon 2 20
1 1
.5 6

It should be emphasized that only senso™ ¢&rror was
considered and that the fixed sensor's results would be degraded by
atcitude errors. This is especially true for the horizon sensor,
since the vehicle-determined 1lccal vertical forms the measurement
reference. Note that the optical sensors may also form the attitude
determination sensor system, as indicated in the proposed
utilization of the space sextant. Correlation between attitude and
navigation solutions may be a problem, but since the attitude filter
requires high frequency updates while the navigation filter may
require less frequent update, the two requirements may bz handled as
two separate problems as long as the navigation system is aware of

the time history of the attitude gsolution.

2.8 Refraction Errors

The largest error sources inherent in the star-earth
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horizon measurement of star refraction are the sensor itself and the

atmospheric modeling required to predict refraction angles. In

studies recently completed for the Naval Surface Weapons Center
[NSWC] by Clynch [1979 and 1981b]. a ray tracing program was used to
compute refraction of a star ray passing through earth's atmosphere.

The model for refractivity was from Owens [1967] vhere the

refractivity, N, 1is a function of the refractive index,

N = 10%(n-1) (2.25)

but the refractive index, n, of a gas must be determined by the

molecular density and relative polarizability. This refractive

index is obtained from the Lorentz-Lorenz equation,

(2.26)

i

ith component.

where R, and Py are the specific refractivity and density of the

Assuming that dry, CO,-free air can be treated as

single component, equation (2.26) can be approximated by

2_ ~
azl.Rsp (2.27)
n2+2

From (2.27), it is seen that

l1+rcRp (2.28)
1-R%
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Thus,
N = 10° [(1_:.__:&_@.) iz 1:] (2.29)
T -Rp

Note that R in Eq. (2.29] is a constant for a homogenous
dry éir mixture, but that density, p, is not a constant nor is it a
well~behaved function of altitude. Density is usually modeled as an

exponential function of altitude,

-a/H
Bebpe ° (2.30)

where

P, = bottom altitude density

a = altitude

Hy = scale height

but this exponential model breaks down when attempting to model
large altitude bands. To extend the range of the equation, the
altitude is broken into several altitude bands of constant
thickness. The constants in Eqs. (2.29) and (2.30), R , P, and H,
also vary as a function of location and of local weather conditions;
thus, location errors and delays result in errors in computed
refraction index and thus in the computed refraction angle for a
given ray altitude. The computed refraction angle, 8, in a slab is

given by a continuous form of Snell's law in the case where a slab

is defined as a region in which n has a small, constant gradient

-\
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[Kelso, 1964]

n sin & = constant = n_ sin o, (2.31)

The computer program used by Clynch propagates the

starlight through the atmosphere and, by constructing a series of
slab§ of constant refractive index gradient, computes the bending of
the ray as it moves from one slab through another. In this
analyéis, the log of density vs. altitude data obtained from the
National Oceanic and Atmospheric Administration were fit with cubic
polynomials with an average relative error of 0.5 percent. When
these models were then used to predict atmospheric density and then
RTA [Fig. 2.7), it was found that the error in RTA was approximately
proportional to the relative error in density at the ray tangent
point with a 1 percent Jensity error producing a 100 m RTA error.
When data one to four days apart were processed, the results showed
the effect of data aging. Table 2.2 lists typigal errors of Ap/p
for several one- and four-day spans in 1979, These values are
computed near the north pole, and latitudes below which density
changes of § 5 percent were observed are indicated. Winter pole
density errors are very large compared to summer, but the error
quickly drops as warmer weather approaches. Even in the worst
month, however, 5 percent error or less is observed over

approximately 60 percent of the earth's surface.
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TABLE 2.2

EFFECT OF ATMOSPHERIC DATA AGEING AT 20 KM ALTITUDE

Date hge (Days) Ae/gf%! Latitude
9 Jan 1 7.5 4oe
. 12 Jan h 27.5 400
21 Jun b b4 90°

Clynch states that when data are aged for five days or more, they
are comparable to climatology predictions; thus, density predictions
covering the quiet 60 percent of the earth should be accurate to
approximately 5 percent,

These errors are those expected from a complex ray tracing
computer program operating with aged atmospheric data. In the
onboard navigation scenario, it is not possible to implement this
ray tracing algorithm, and a reduced order model must be used that
includes an atmosphere generated onboard with a minimum of updates.
Clynch [1981a] proposes an approximation to the ray path that
matches the actual density and density gradient only at the ray
tangent point (RTP). Altitude (a) near the RTP is approximated as a

function of distance from the RTP, (s], by

a - RTA = o (2.32)

where

»
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P = R + RTA

The refractior angle 6 1is then expressed as the integral over the

path length

8(RTA) « J 49 4s, (2.33)
» 43

The actual path length derivative de/ds is a function of conditions

in each slab, but when the actual optical path is replaced by a

straight line through the RTP and tangent to the ray there,

the
_.2
integral becomes a Gaussian integral (containing e™* dx terms).
~ o 2
8(RTA) = 3R(A)p J exp ( -3 ) ds
2Hs lw eras
1/2
8 2nr
. 3R(x)rn r (2.34)
2 Hs

where R(A) is the specific refractivity of dry air at the

wavelength, A , of interest, and p 1is evaluated at the RTP.

iIf, in addition to the assumption that curvature of the

path takes place very near the RTP, it can also be assumed that

conditions about the RTP are stable, then data on the atmosphere at
the geometric tangent point (the geometric intersection of tangent
lines from the star and spacecraft = GTP) can be used to determine
H and o(RTA). RTA s then

altitude (GTA).

approximated by geometric tangent

This greatly simplifies the problem since GTA is

e ity




i L AR R

1

Ty
<R3

56

determined by star, earth and spacecraft positions alone. The

equation relating o[GTA) and e(RTA) 1is
9(RTA) = 6(GTA) exp [-go(rTA)] (2.35)

where

r H
.1 _(Irls\ire )

Sp = distance from observer to point of ray tangency

Since Eq. (2.35) is transcendental in (RTA), large differences in

atmospheric conditions (Hs and p) between GTA and RTA would

require an iterative solution.

Testing this simplified model for 6(RTA) vs. the complex
atmosphere in the ray tracing program showed a relative error of
approximately 2 percent in the GTA range 25 to 45 km. This
corresponds to an error of 2.4 to .16 arcsec in 6{RTA) . These
results indicate that the contribution of atmospheric modeling to
the CCD sensor error budget is on the order of 2 arcsec plus the
error due to not having current atmospheric data. If monthly
atmospheric data are transmitted to the vehicle and if that data can
then be extrapolated to produce less than an 8 percent density
error, then the refraction model would contribute approximately

1000 m to the error in GTA.

Even a total error in density of 15 percent, giving a GTA
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error of 1500 m would result in a 12-hour orbit navigation error of
only 350 m with two star-horizon CCD sensor pairs. Lower orbits
would feel that GTA error more acutely, and higher orbit accuracy
would be better. Before realistic error budgets can be produced,

however, more work must be done to quantify errors in long-ternm

density prediction.
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CHAPTER 3

GLOBAL POSITIONING SYSTEM

3.1 Introduction

The results of Sections 2.7 and 2.8 show that the optical
sensors being developed will produce navigation accuracies on the
order of 300 meters. Several satellite programs, however, require
errors of less than 50 m and are therefore potential GPS users if
GPS can be made less dependent on ground tracking and control. This
1s the purpose of the remainder of this report -- to investigate the
feasibility of autonomous navigation of GPS vehicles using
satellite-to-satellite range and integrated doppler information in a
reasonably sized onboard navigation processor. The approach taken
is to first determine constellation selection effects, then to
analyze filter model requirements with consider covariance
techniques and to propose an onboard filter degign and evaluate its

error propagation characteristies,

3.2 GPS Constellations

The Global Positioning System is composed of a spaceborne
segment consisting of a variable number of satellites in 12-sidereaj
hour orbits, a control segment consisting of a Master Control
Station (MCS), and four remote Monitor Stations (MS) and a user

segment consisting of many different user receiver sets built by
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several different manufacturers. The number of satellites to be
placed in the constellation varies with congressional budget
decisions., Descriptions of the system and its several facets abound
in the literature, and an excellent collection of papers can be
found published together by the Institute of Navigation.

The number of satellites currently planned is 18, and two
differgnt constellations have been analyzed by the Joint Program
office (JP0) [Book, et al., 1980]. The first of these is a modified
three-plane 24-satellite configuration in which two of the eight
satellites in each plane are eliminated leaving an unsymmetric 18-
satellite constellation. This 1is termed the 3 x 6 configuration
since three planes of six satellites each are employed. The second
candidate constellation consists of six planes with three satellites
each in a symmetric pattern, i.e., a 6 x 3 constellation. The orbit
elements for these constellations are given in Table 3.1.

According to Book, et al., the unsymmetric 3 x 6
constellation has a geometric performance with respect to the ground
almost as good as the symmetric 6 x 3 configuration, where GPS
geometric performance is determined by examining the trace of a unit
covariance matrix of the user position error as follows [Milliken
and Zoller, 1980].

If the user receives information from at least four GPS
satellites, he can estimate his position and his clock error and the

error in these estimates. He measures a pseudo-range to each

S o it
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I3
g
§ satellite:
3
%
g ) -
£ Py = oy +caty, +clat, Atgi) + e (3.1)
<
3 where
; < P, = pseudo-range to satellite i
} Py = geometric range
E
i At8 = gsatellite 1 clock offset from a common time scale
\ i
%
Iy At = user clock offset
% At, = propagation delays, etc.
. i
€, = random measurement noise

If AtAi is determined or adeqguately modeled and At8 known for
i

each satellite, then four Py measurements to four GPS vehicles

provide information to solve for user position [x,y,z) and clock

1/2
2 2 2
bias (cAtu). Since Py = [:(xgi-x) + (ygi'Y) + (zgi-Z)‘] » the

measurement partial derivatives are given by

.wwﬁwvxmmmevm ————

3Ry Ry OR; 3R,
i " T PR T
x-x81 y-y81 z-z81
* ' ' y 1 (3.2)
P P
Py i i - %
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can be computed from

INF_ [:nf Hy .. sz] 1) | . (3.3)

RIS R g wgwwmwmwmwulmﬁ‘ﬁm%wmm
. v‘--qJ
I
1)
|
i
1
r
1
i

| * k2 4

and the corresponding unit covariance matrix is

PO TRRL & 5V TR ke

-1
cov, - InF'. (3.4)

This is termed a unit covariance here because the unit range
variances do not reflect reality but produce user position sigmas
that can then be multiplied by actual system errors to give
realistie wuser errors. The trace of the COVu matrix describes the

variance of the user's position error and clock bias given a unit

variance in each range measurement. rr[COVu] is thus called the
Geometric Dilution of Precision (GDOP) since {t describes a four-

dimensional geometri. error. Other similar definitions follow:

PDOP = [COV  (1,1) + cov,(2,2) + cov(3,3)] (3.5)
= Position Dilution of Precision
: HDOP = [cov,  (2,2) + cov, (3,3)] (3.6)
g RTN RTN
% & Horizontal Dilution of Precision

o - E—— st e < e I,
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vDoP = cOV,  (1,1) (3.7)
RTN
& Vertical Dilution of Precision
TDOP = COV, (4,4) (3.8)

¥ Time Dilution of Precision

Note that GDOP requires the inversion of a 4 x ¥ symmetric
matrix, and PDOP requires the inversion of a 3 x 3 matrix. It will

be seen in GDOP and PDOP plots that they provide essentially the

same information; thus, a user can save processor time by using PDOP

in selecting the optimum set of four GPS satellites, It would be

even more Dbeneficial if the trace of the user information matrix

instead of COV, could he used to determine optimum GPS satellite
selection, But, as noticed by Fang [1980], each row, partial in the
H matrix is a unit vector pointing to GPSi, while the fourth
component is 1. When the product HTH is formed, the resulting
trace for n satellites can be obtained through the commutative

property of the trace,

Tr(#TH) = Tr{unT) (3.9)

but,

P s
" Sinpn
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Therefore, the trace of the user information matrix is a constant

e g TR T e SRR

equal to 2n for n satellites and gives no information about the

2%
;

geometric attributes of the configuration.

LY T

3.3 Constellation Comparison

TORELTF T

To determine the effect of constellation selection [3 x 6

T
»

W"wuwm‘

or 6 X 3) on GPS vehicle navigation, a relative geometry computer
program was written to step through one 12-hour GPS cycle., Eazh 10

minutes, satellite positions were computed and used to determine

<2
?

GDOP and PDOP for any desired GPS user spacecraft. In addition,

satellite visibility times were accumulated so a total percentage of
the orbit visible to each satellite was available. Figure 3.1 shows
GDOP and PDOP, along with number of satellites visible to the GPS #1

spacecraft for the symmetric 6 x 3 constellation. Elevation 1limits

e T 1 e gt e

of -28° to -76°, as recommended by Chao [1981], were used in the

visibility check, and all satellites visible were included in the

calculations. It was decided to use all visible satellites in thc

geometry calculati- s because the GPS crosslink (L3 at 1381 MHz)

will allow each satellite to transmit for approximately 1.5 seconds

every 36 seconds [Barr, 1981] and the navigation algorithm would

benefit from clock and position information from all available
vehicles rather than selecting an optimum set of 4. GDOP and PDOP
follow similar but offset paths for other vehicles, but the GDOP

patterns are identical for any two vehicles when corrected for

-3 Hb«:}wr\}. B i » Y
e s




e g

T TRt LN A e Y Tt U S L

64

8.0

6.0

4.0

2.0

00 "8

1
-~ {1
- T el i {
ez -7 ) "
e i
.. [
'- L
- - -
el =
S 0
. >
s . 7]
, ]
e - " - Clea
RPN =
el W....u_
I <
-~ . n
< 7 a. o,
- - [ Y =] -
~ .. ===
- - - oo =z
Iz
- &« = = “IO
, RS
1]
.|
s
~ e N _
T T T T T T T
00 "L 00°9 00 °S 1] eI 4 00 ‘€ 00 °C oot 0o
¢/318ISIA SiySs ® d4D0Od ‘4009
B Y - ANt 3

(HOURS)

TIME

GPS Geomeztric Performance, 6x3 Symmetric

Constellation, Satellite No.

Figure 3.1,

1

i
- - AR




B e

65

satellite phase difference. Note that there is an Iinverse
correlation between GDOP and number of satellites visible, with the
minimum GDOP (2.5) corresponding to 14 vehicles visible and the
maximum {“4.2) corresponding to 11 visible.

Figure 3.2 shows the same information for the unsymmetric
3 x 6 constellation, satellite #1. This constellation does not
producg similar GDOP patterns for different vehicles, and the
minimum values {~2.5 and ~2.8) and maximum values (~4.7 and 4.0) are
aiso inconsistent among users. Table 3.2 shows the minimum and
maximum values over one orbit for the 18 satellites. Note that most
of the values are higher than those encountered in the 6 x 3
constellation and that all of the average values are higher in the
3 x 6 case,

Figure 3.3 shows the percent of the orbit during which
each GPS sz ellite is visible to vehicle #1 in the 6 x 3
constellation. The values range from a low of about 38% to several
1008 cases. Figure 3.4 depicts the same information for vehicle #1
in the 3 x 6 constellation., The main difference 1is that some
satellites in the 3 x 6 constellation are invisible to each other
(satellite #1 cannot see #2 and #5), potentially weakening the
position and clock estimatioon results of Lhe whole system. For this
reason and also because of better GDOP performance, the symmetric

6 x 3 constellation 1is desirable from a satellite-to-satellite

tracking viewpoint.
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TABLE 3.1. GP3 ORBIT ELEMENTS
A. Unsymmetric 3 x 6 Constellation
Semi-major axis: 26575.6 km
Eccentricity: 0.0
Inclination: 55 deg
Relative Ascending Node: 0, 120, 240 deg
Argument of Perigee: 0 deg

Mean Anomaly at Epoch:
Plane 1: 0, 45, 90, 135, 270, 315 deg

Plane 2: 20, 65, 110, 155, 200, 245 deg
Plane 3: 40, 175, 220, 265, 310, 355 deg
B. Symmetric & x 3 Constellation
Semi-major Axis: 26575.6 km
Eccentricity: 0.0

Inclination: 55 deg

o e s A s o

Relative Ascending Node: 0, 60, 120, 180, 240, 300 deg

Argument of Perigee: 0 deg

Mean anomaly 2t B

1 0, 120, 240 deg
2 "0, 160, 280 deg
3: 80, 200, 320 deg
Plane 4: 120, 240, 0 deg
5: 160, 280, 40 deg
6 200, 320, 80 deg

3.4 GPS Error Sources

The consider covariance analysis that follows in Chapter &

provides realistic satellite position errors when given realistic

R
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TABLE 3.2
MINIMUM, MAXIMUM AND AVERAGE GDOP VALUES
A. Unsymmetric 3 x 6 Constellation
Satellite: 1 2 3 4 5 6 7 8 9
Min GDOP: 2.37 2.47 2,45 2.38 2.46 2.58 2.38 2.46 2.60
Max GDOP: U4.40 4.04 4,72 4,29 4.2t 4,70 4.29 4.83 4.51
Avg GDOP: 3.30 3.25 3.48 3.19 3.24 3.4 3.30 3.62 3.51
Sa.x1llite: 10 11 12 13 14 15 16 17 18
Min GDOP: 2.65 2.66 2.29 2,58 2.29 2.59 2.38 2.38 2,64
Max GDOP: 4,54 4,62 4,20 4,23 4,10 414 4,48 L4.58 4,83
Avg GDOP: 3.44 3.60 3.28 3.23 3.19 3.37 3.25 3.35 3.49
B. Symmetric 6 x 3 Constellation
Satellite: All
Min GDOP: 2.37
Max GUOF: q,a5
Avg GDOP: 2.88

70
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values of the 10 errors expected to be seen by the satellite. The
purpose of this section is to describe the error sources in the GPS
autonomous navigation scenario and, where necegsary, to determine
values or bounds on the values expected to be experienced by the
satellite. The results of the consider analysis will then indicate
which error source effects must be modeled or estimated in the
onboard filter algorithm. Some of these effects are unobservable by
satellite-to-satellite tracking, so these error sources, if the
effects are large enough, will be added to the onboard algorithm
without considering them in the covariance analysis.

The GPS autonomous navigation problem contains several
error sources in common with a user on the ground and some unique
errors of its own. A ground user experiences the following error
sources [General Dynamics, 1978]:

a. user clock bias and drift,

b. satellite clock bias and drift,

¢. receiver movement during signal transit,
d. satellite ephemeris,

e. relativistic effeccs,

f. antennae offsets,

g+ receiver signal delay,

h. time tagging,

i. 1ionospheric delay,

J. tropospheric delay.
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A GPS satellite receiver located above the 1lonosphere sees errors
due to

a. user clock bias and drift,

b. satellite clock bias and drift,

¢,  receiver movement during signal transit,

d. satellite ephemeris,

e. -relativistic effects,

f. antennae offsets,

g. receiver signal delay,

h. time tagging,

i. earth geopotential,

j. n-body gravity,

k. solar radiation pressure,

1. vehicle thrusting or outgassing,

m. earth polar motion and angular velocity.

In this study, it 1is assumed that pre-processing of

pseudo-range and integrated doppler measurements is performed and

that reaidual

[$]

rrors due to receiver movement, relativity, antennae
offsets, receiver signal delay and time tagging can be modeled or
corrected for with the remaining measurement errors expressed as
uncorrelated, zero-mean, Gaussian errors. Simulation of the

remaining errors is described in the following sections.
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3.4.1 GPS Clock Errors

Operational GPS satellites are planned to contain two
rubidium and two cesium beam frequency standards with the pecssible
addition of a hydrogen maser [Payne, 1982]. To characterize the
errors inherent in these precise time standards, it is convenient to
measure clock stability in terms of the Allan variance of its

fractional frequency error, %ﬁ . The error in the GPS clock after

[¢]

some elapsed time from update is
- Af (. L (t-¢ )2
T(r) - 1(r) = T (t-t,) + 5 (t te)

X [t 5¢(s)ds (3.11)

where

fo = 2mv, = nominal frequency (rad/sec)

o]
]

time-varying true frequency

Af

frequency offset

la T}
L}

frequency drift

sr(t)

time-varying random frequency error

Differentiating yields

ae(t) . ar(to) , £ (4. st (t)
._T%rl -ég-l * 3t (t-t,) + <5 (3.12)

e}
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T Now, following the description by Meditch [1975], let
" y(t) = E%l&l = fractional frequency error, (3.13)
B )
E, then the average fractional frequency error over a sampling period,
T, is
é : bt
t YV =
Ve = 3 y(t)at, (3.14)
by

which, after substituting and assuming 4 constant over T

becomes

o AW A TR T

yk - f ’ (3.15)

where ¢(t) is the phase error at t . The Allan variance is then

defined as

N g A e e ame

2 1 (= -2
Oy(T) = Q'E[(Yk+1 -~ ¥ ) ]
(]

" -

'?_rﬂ'k§1 (yk+1 - Yy

for m samples of ¥ .

Allan variance i{s defined in the time domain by 05(1)
and in the frequency domain by Sy(f) . Clock errors in the
frequency domain typically exhibit at least two types of frequency
standard noise: white frequency noise, defined by a constant

spectral density versus frequency and flicker noise, defined by a
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~20 db/decade slope versus frequency. In addition, at very low
frequencies (long sample times, 1), the integral of white noise
causes a -U40 db/decade slope. A typical Allan variance curve
showing GPS specifications is given in Figure 3.5, along with actual

on-orbit clock values [Payne, 1982].

3.4.1,1 GPS Clock Error Simulation

Since Allan variance is widely used as a measure of atomic
frequency standard stability, time error simulation using an input
value for Allan variance is a necessity for GPS error analyses.

To generate a frequency error signal, y(t) , and its
integral, the phase error, the Allan variance curve is described in

the time domain by the power series
2
oz(1) = g Ky (3.17)

where g = -2, -1, 0, +1, +2 and each value of B8 dominates in a

region T to o In the frequency domain, a similar series can

be used to compute the one-sided spectral density,

S = a

y(£) = § hy f (3.18)
a

with a having the same values as 8 . Similar to B8 , each value

of a dominates over a certain frequency range. The constants, KB

and ha define the level of the time or frequency clock error

= e e A T T T e e e T
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segment.

To simulate y(r) » the Allan variance levels and corner
frequencies are specified. These values determine the Bode plot of
the one-sided spectral density. From the Bode plot, spectral
shaping produces a dynamic system function [Laning and Battin,
1977]. An inverse Laplace transform then generates time domain
linear differential equations, The solution of these equations
produces y(+) and its integral.

For white frequency noise and integrated white frequerncy
noise, the inverse Laplace transform is straightforward. The power
spectral density function corresponding to integrated white noise
(frequencies below £, or averaging times above 12) is
b2(s? + a2m$)

————— (3.19)
a2(s? + w?)

Sy(s) =

where s is the complex frequency o + Jw and w = f.

This is the spectral density of a Gaussian white noise process

driving a linear system. It can then be expreased as
Sy(s) = H(s) H*(s) Su(s) (3.20)

where H(s) is the linear system transfer function, H*[s) is its
complex conjugate and Su(s) is the spectral density of the white
noise process. Since Su(s) is constant, assume it to be unity,

implying unit variance, then

rEasl AN < F RIS an Kew et W ae s Rrem -
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(s + aw,)
Hs) - 2 —— 1 (3.21)
(s + w)
and the transfer function for the outnut signal is
Y(s) = H(s) u(s) = H(s). (3.22)

Taking an inverse Laplace transform produces the linear differential

equation
x(x) = -upx(x) + (a=1)upu(x) (3.23)
then
y(x) = 2 [x(x) + u(x)] (3.24)

where u(t) is the output of a unit variance Gaussian random number
generator.

Flicker noise, however, cannot be generated by one inverse
Laplace transform since the spectral density curve corresponds to a

transfer function of the form

H(s) - 223%75 = (%]1/2 (3.25)

for which a finite-order state representation cannot be constructed
which will generate the system output [Meditch, 1975]. Several
approaches to approximate y(t] for flicker noise have been
proposed, and Meditch describes a method by Barnes and Jarvis [1971]

that efficiently models 1/(s)2 by a cascade of lag networks.
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é The technique consists of approximating the desired transfer
function with slope -10 db/decade with n stages, each consisting
. of a =20 db/decade section 2and a white noise (constant spectral
2 density) section. For simulation purposes, Meditch states that a
i choice of n = 4§ gives a reasonable and efficient approximation to

; the'desired shape.

Once the series approximation to 1/[3)1/2 is complete,

O W s T

the inverse Laplace transform gives a linear differential equation
for each stage. These equations then form an n-vector 1linear
differential equation whose solution provides x[r] such that y(x)
for averaging times between ™ and Ty can be simulated.

As seen in Figure 3.5, GPS clocks are exhibiting Allan

variances of 107 %2 for t = 1 hour to 107 '3 for 1> 2 days. These

TSI SRR T U BT R 0

values give stavilities of 10—3 to 10—h ns/s and are used in the GPS

navigation error model as expected accuracies of operational cesium

clocks, It i{s assumed that hydrogen masers are one order of
magnitude better [Kartaschoff, 1978, p. 62]. Note that, from Figure
3.5, another order of magnitude improvement in 8f/f would allow
the c¢locks to run independently for 140 days with a user equivalent

range error (UERE) of approximately 90 meters.

3.4.2 Satellite Ephemeris Errors

GPS ephemeris errors in the ground tracking mode are

required to be on the order of 1-10 m. Current estimates of
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position errors indicate that 12-hour periodic errors of 2, 10 and
6 m in the RTN directions are combined with a secular tangential
error growth of 3 m/day [Anderle. 1980]. This short-term linear
growth becomes quadratic in the 1long term. GPS satellite-to-
satellite tracking errors, however, have not been quantified for
long~term operation. This is one goal of this study. Liu's [1981]
analysis of satellite ephemeris errors over two weeks of GPS-GPS
tracking shows an 80 m secular growth and a six-hour 20 m periodic
term due to solar radiation pressure errors.

In this study, one satellite at a time is analyzed and it
is assumed that initial RTN error sigmas are 2, 10 and 6 m,
respectively, with a secular tangential growth of 3 m/day for the
other vehicles. These values are used in the consider analysis to

determine navigation errors of satellite #1.

3.4.3 Earth Geopotential Errors

One of the goals of this study is to determine the
accuracy and size (order and degree) of the onboard geopotential
required for accurate GPS navigation. In addition to being subject
to secular perturbations due to J2, the GPS 12-hour orbit is
resonant with the harmonic coefficients of degree 2 and 4, so errors
in their values and errors due to their absence in the onboard

filter will be magnified over any long prediction interval.

Table 3.3 from Wagner and Lerch [1978] describes the
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estimated error in the GEM 8 earth model obtained by comparing the
earth model predictions with new observations not included in the
model formulation. These errors are then used in the analysis of

geopotential error effects on GPS orbits in Chapter M.

o ST P o o g vl ™ T R T4 ST TR LY oL ST LT P HATRI m“mdwﬂ

: TABLE 3.3
é ESTIMATED GEM 8 GEOPOTENTIAL ERRORS ( x 1079)
& .
% Degree (%)
% 2 1 3 s
i 3 2 7 11 14
& ¥ 1 5 6 6 11
: 5 2 8 12 13 14 18
; 6 2 7T 9 9 12 10 15
S 7 3 10 14 15 16 16 16 22
8 2 9 12 12 14 12 16 12 17

9 2 12 16 18 20 17 19 18 17 11

10 2 10 15 16 17 16 17 14 17 11 16

11 3 14 17 21 20 21 20 18 19 12 16 17

12 3 11 15 19 18 21 18 18 18 11 15 8 7

0 1 2 3 4 5 6 7T 8 9 10 11 12
Order (m)

3.4,4 Solar Radiation Pressure

é As stated in Section 3.4.2, solar radiation errors

¥

i} considered by Liu caused a 20 m periodic satellite position error.
| é; Liu assumed a 10 radiation pressure error of 10%, for an
' %k acceleration uncertainty of 10—10 m/sz. Recent discussions with the

&

%? NSWC personnel who determine GPS reference orbits indicate that

%% radiation pressure coefficient errors (10) of approximately 1% have

0y

been observed. These figures provide a range for the errors
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considered in this analysis.

3.4.5 Vehicle Thrusting or Qutgassing

The GPS vehicle is subject to periodic gas jet thrusting
to maintain or change orbital elements and to dump excess momentum
from the attitude control system (Acs) momentum wheels. The orbit
adjusts are planned and occur infrequently, but when gas jet
momentum dumping occurs, it is performed automatically by the ACS.
If operational satellites emplcy gas Jjet dumping, satellite
navigation performance would suffer dramatically each time gas jet

firings occur because of thrust imbalance and possible plume

impingement. It is expected, however, that magnetic dumping of

momentum will be accomplished by the onboard ACS processor. Tests
on current GPS vehicles indicate that magnetic momentum dumping is

successful [Ferguson and Kronke, 1980], so gas jet thrusting is

necessary only for orbit maneuvering.
Outgassing is a phenomenon that does not 1lend itself to
easy prediction. Phase I GPS vehicles on orbit appear to be

experiencing an acceleration along the spacecraft solar panel axis

on the order of %1072 to + 107'3 m/s2. The cause of this

acceleration is possibly due to unmatched radiators on opposite
sides of the vehicle, and this thrust, while not strictly

outgassing, has a form similar to that caused by the boiling off of

volatile gases. If analysis confirms that the operational venicles
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may experience unmodeled thrusting, then the onboard filter must

oy T

include these unmodeled accelerations in the state vector. Since
the existence and form of these accelerations in the operational

system are unknown, they are neglected in this analysis.

3.8.6 Earth Polar Motion and Angu.ar Velocity

Even if the GPS satellites could navigate accurately with
]

respect to each other and contained precise models of the other
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perturbing forces, the constellation would still drifc from the

earth-centered, rotating frame [ECR) in which user positions are
defind. The largest error source between an inertial earth-centered

frame (ECI) and the ECR frame is the angular velocity of the earth,

OBy T T

with smaller errors caused by polar motion. The integral of angular

{55 B AN

velocity errors is the time difference UT1-UTC. Currently, it has a

) yearly drift of approximately i second, the well-known leap second

correction.

uTcC (Coordinated Universal Time) reoresents a Muniform
time scale" and is obtained by applying a fixed offset of
32.184 seconds to an international atomic iime scale (TAI)
maintained by the Bureau International de 1'Heure (BIH) in Paris

[The Astronomical Almanac, 1983). The difference, UT1-UTC, plus the

record of leap seconds then is a measure of the changes in earth's
rotation rate. UT1-UTC is published for 5-day intervals by the BIH,

and these tables provide the raw data by which UT1-UTC can be
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predicted and these predictions verified [BIH, 197"].

3.4.6.1 UT1-UTC Prediction

BIH tables from 1974 te 1980 wzre analyzed to determine
the long-term (> 6 month) predictability of UT1-UTC. Short-term
predictions have been made by Zhu [1931] and Meyerhoff [1978] in
which curve fitting techniques were used to fit UT1-UTC values over
one year (Meyerhoff) and three years (Zhu) and then predict thase

values for periods of 5 to 40 days. Each study used a series of the

form

n
UT1-UTC = a + bt + 121 [‘31 sin (BHE ) 4 ¢ oos ( 2ME )]

(3.30)

Zhu set n=2 and Meyerhoff determined fits for n=1 to 15 with
the Dbest results obtained with n=d to 6. Meyerhoff's power
spectral analysis indicated that n must be at least 4 to fit the
major frequencies. Both authors then predicted UT1-UTC values for a
large number of 5~ to U40-day intervals. Meyerhoff found that 1o
errors of 2 to 7 ms resulted from his 5- Lo 20-day predictions, and
Zhu observed prediction errors of 1.8 ms for 5-day rpredictions to
3.7 ms for 40 days but that the ercors grew rapidly after 40 days.
It appears that the determination of the long-term drift over three
years significantly improved Zhu's results.

Since autonomous operation of GPS for six months is a
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goal, the long-term prediction of UT1-UTC is a requirement of the
onboard softwarzs, To determine the accuracy of this prediction, BIH
data from 1974 through 1980 were fit in one-year batches by
Eq. (3.30) with n=4. The it resiiuals shown for 1974 and 1979
(Figures 3.6 and 3.7) are typical, and it is seen that the fits
exhibited maximum errors of approximately 4 ms and RMS values of 2
ms. When the equations were used to predict UT1-UTC for one year
following the fit, several different types of behavior were
observed. The best prediction was for 1975 {Figure 3.8), with
maximum errors of -10 and +17 ms and an apparent long-term periodic
behavior. 1975 data predicted to 1976 {Figure 3.9., however, showed
a negative slope secular trend with the maximum error reaching -78
ms, and the 1979 fit-1980 prediction (Figure 3.10) had a positive
slope with a maximum error of 115 ms. In all of the one-year
predictions, six-month performance was better than 70 ms.

When data over three years were fit, Eq. (3.30) was
augmented by the addition of two-year perlodic terms. After
correcting for leap ceconds, a sliding three-year fit for data
between 1974 and 1979 was used to predict UT1-UTC values for the
following vne year. The results for one-year predictions at six-
month intervals are shown In Figures 3.11 through 3.15, where
maximum six-month prediction error was -58 ms and the RMS error for
all predictions was 36.T7 ms. Note that six-month predictions were

much better than those for one year. The one-year RMS error was 86
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ms and several examples of large secular growth were observed.

From these aata, it appears that errors of up to 70 ms
arise when one-year BIH data is used to predict for six months but
that three-year data spans allow predictions with 1o errors of less
than 49 ms to be made. Since 50 ms appears a reasonable limit to
six-month UTi-UTC predictions, the effect of this error on GPS
navigation will be assessed.

A UT1-UTC error of 50 ms corresponds to an angular error
between the ECR and ECI coordinate frames of 3.65 urad = .75 arcsec,
At GPS altitude, this represents an apparent ephemeris error at the
equator of 96.5 m. For GPS navigation, this {s a large error
compared to the desired accuracy but may not be as severe as other
error sources over six-month operation. If degraded performance is
allowable for extended autonomous operation, this error may be
acceptable. In event this error must be reduced better
understanding of earth rotation, periodic onboard model update or

active GPS tracking of earth-based transmitters would be required.

3.4.6.2 Polar Motion Predictiun

Both Meyerhoff [1978] and zhu [1981] report that modeling

of the moving coordinates of the geographic north pole to much

better levels than the UT1-UTC error. Meyerhoff's 20-day pole

positions showed x-only coordinate errors of approximately .02 and

.01 arcsec, respectively, while Zhu reports 60-day average RSS

-
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errors of .02 arcsec. Zhu suggests that this .02 arcsec error

remains fairly constant for up to two years of prediction, thus

polar motion 1is about three orders of magnitude less severe than

earth rotation rate as an error source.

3.4.6.3 GPS Coordinate Systems

A GPS user receives satellite position information in the
ECR coordinate system [Van Dierendonck, et al., 1980], while the MCS
software determines the satellite state in an ECI coordinate system
defined by mean equator and equinox of 1 January 1950 {General
Dynamics, 1978] and uses the matrix product ABCD to transform from
ECL to ECR coordinates. D is a rotation matrix containing luni-
solar and planetary precession terms necessary to transform from the

mean equator and equinox of 1 January 1950 to the mean equator and

equinox of date. C is a matrix containing nutation terms necessary

to transform from the mean equator and equinox of date to the true

equator and equinox of date. The B matrix converts from the true of

date inertial system to an earth-fixed system by rotating through

the Greenwich Hour Angle plus UT1-UTC and nutation [equation of the
eqinoxes) terms and, finally, the A matrix contains polar motion

rotation terms.
The onboard estimation algorithm has a choice of these two

coordinate systems in which to perform its ephemeris calculations.

If the ECR frame is chosen, conversions of output are unnecessary,




but the equations of motion are complicated by

aECRuEI—z'J;xv-ExGxF

Al <R SUIR
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where w is the angular velocity of the earth. The errors in
are not easily modeled, as the slope of the UT1-UTC curves gives the
earth rotation error; thus errors in the spacecraft acceleration are
difficulp to predict in the ECR frame. In addition, the
reconstruction of past performance of the navigation filter |is
complicated by the time-varying nature of & w. For these reasons,

it is recommended that the onboard algorithm use an inertial (mean
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of 1950.0) frame for the ephemeris calculations.
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CHAPTER U

GPS ERROR ANALYSIS

4,1 Introduction

A relative autonomous navigation application fur PS
spacecraft will include an observation filter and an onboard model
for ephemeris prediction. This model of the satellite dynamics 1is
used for propagating the spacecraft state and errur covariance
between filter updates. The propagation interval varies from the
1.5 second doppler averaging time to a possibie one- or two-hour
delay between updates.,

The method chosen to determine the requirements for the
onboard model 1is a mixture of analytical and numerical techniques.
Satellite-to-satellite range and doppler observations from
satellites moving in similar orbit planes cannot provide information
concerning a common secular motion of all satzllite planes, but
should be able to accurately observe differentisl planar and in-
plane motionz. In this investigation, secular planar 1otion caused
by the various perturbing forces is determined analytically through
examination of equations of motion of the orbit elements and
numerically through a consider covariance analysis, while the
effects of errors in model parameters upon planar and in-plane
motion is determined through consider analysis. Figure 4.1 depicts

the process by which the model is selected and analyzed. The model

99




A RS Akt Mk T L e (RGO U T TR TR R TR e

Teyler T4 ey 00

<

Sbed LA AL

o B e (T S ET  TCy R < A T e Sk AT e

PRV N S €

100

Equations of Consider

Hotion Analysis

AN

Effect of Effects of
Neglecting Errors in
Force Force

Model
Accuracy

Simulation
Program

Truth

Decentralized

Simulated

Estimation
Algorithm

Ephemeris Observations

Estimated
Ephemeris

Compar ison

Figure 4.1, TFilter Model Selection and
Evaluation Process
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is then used in 18 decentralized estimation filters to propagate the
state vectors of the 18 satellites. Observations produced by a
high-order simulaticon program and corrupted by random measurement
and clock noise are then processed by the estimation algorithm. The
estimation output 1is compared to a truth ephemeris produced by the
simulation program to determine the accuracy and stability of the
prOposed'algorithm.

Since model error will be a prime consideration in the
design of an onboard filter, this chapter starts with a discussion
of the two prevailing techniques used to handle and quantify this
error, The motion of GPS orbit planes is then analyzed, followed by

a consider analysis of the expected relative navigation accuracy of

the system. The objective of this chapter is to define a model to
be used in the estimation algorithm proposed in Chapter 5, along

with its expected performance.

4,2 Filter Divergence

As derived in Chapter 2, the state errc. covariance
matrix, P , when propagated and updated by the Kalman filter
equations (Eq. 2.4 and 2.8) gives an optimistic (low) value for the
state error variance. In a filter where the state i3 belug
corrected through the inclusion of observations, this low value of
P causes a low Kalman gain, K , which results in new data being

ignored. If the true spacecraft state is given by the n-vector
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X(t) and an a priori estimate of this state is defined by X*(t),

then define the state error by
x(t) = x(t) - x*(¢) (4.1)

The nonlinear orbit determination problem, given by the state

differential equation
x(t) = F(x(t),t) (u.2)
and the m-vector measurement equation at t = ti
Yy = o(x(ty).ty) + g (4.5)
with €, = N(0,R;), R; > 0,

is then linearized by expressing x{t) as a Taylor series expanded

about the a priori estimate, x*(t) and Yi as a Taylor series

*
about Y, = G(X*(ti),ti]. The linear problem is then

x(t) = alt)x(t) (u.%)

v, = Hyox(t] + g

where
A(t) "al"%if%%"ilx*[t) (’4.5)
f, - ic%;i—}iiﬂx,(n) (1.6)

An unbiased, minimum variance estimate of the state error

5'5?3"}
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at t = t, 1is then given by Jazwinski [1970, p. 198] as
R, =X, + Kk(yk - Hk;k] (4.7)
where
LI CYRLRY . (v.8)

and  ¢(t,,t,_,) 1s defined by Eq. (2.5).

Note that in Eq. (4.7), the propagated state error
estimate, §k is updated by observation residuals, Yy » multiplied by
Ky so that if the covariance matrix, ¥ , drops to unrealistically
low values, the gain K, = —HT(HFHT + R)™! becomes small, and the
updated state error Rk is not sensitive to the observations. This
leads to the well~known symptom of filter divergence where residuals
become large and, finally, the state error grows to values much
larger than the error bounds expressed by the variances in P .

The cause of filter divergence is the assumption that
reality is correctly modeled by the two sets of equations, F(X(t),t)
and G(X(ti),ti) when, in fact, our knowledge of the real forces
acting on a spacecraft and of the actual physics involved in a
measurement process is quite 1limited. Even if we had perfect
knowledge of the forces and measurements involved, the solutions to
the state differential and measurement equations are only
approximated on a digital computer. The two major errors,

approximation of the equations solutions by finite series or

e
£
G .

X



-
i

o

¢, e, A NG SR e T

w At e

T

G BT PLEST e

104

numerical Iintegration (truncation error) and finite computer word

length (round-off) would continue to give errors for x(t)

¥ .

and

Filter divergence is not observed in pre~-miussion

covariance analyses because observations are not being processed to

produce state errors. A Monte Zarlo analysis in which a more

sophisticated model generates observations for use in a lower order
filter can be used to evaluate this phenomenon. Covariance analysis
results do, however, suffer from the effects of model error. The
state error variance is optimistically low and desired information

about the effect of unmodeled errors is not produced.

4.3 State Noise Covariance Analysis

To combat the problem of filter divcrgence or an

unrealistic covariance matrix, estimation algorithms can employ

state noise or model noise compensation [Jazwinski, 1970,
2u7].

ppl 2}'“'"
Instead of the "perfect" model assumed in Eq. (u.u), let us

assume that our state differential equations are corrupted by a

Brownian motion process such that

x(t) = a(t)x(t) + B(t)ds(t) (4.9)
vy = Hyx(eg) + g

where B(t) is a non-random matrix that maps the r-vector dg(t)

into the n space of x(t) and

e
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E(as(t)] = 0 (4.9)
E[a8(t)as™(t)] - a(t)ar afe) >0 (4.%0)
E[d8(t)dsT(x)] « Qs(t-1) § = dirac delta (4.11)
E[as(t)ef] = o (4.12)

The state error is then propagated from &, to t by
() = oltstyJale,) + [ ole, el c)asle). (4.13)
k%

To propagate P , first look at the propagation of P without model

noise.

Plt) = olt.t, )p(e, )eT(t,t,) (4.14)
Differentiating,

P(t) = o(t.t, )p(t, Jo(t.t,)

+olt,t )p(t, Jo (8,2, ) (4.15)

and substituting for &(t.tk)

8(et,) = a(t)olt,ty) (4.16)

We arrive at the matrix Riccati equation:

Ple) = alt)e(e.t,)p(e, )oT(t,t,)

r TR e
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(4.17)

Now, for the case of model noise, if R[t) is an unbiased estimator

of the state error x(t] and t > Yy [Maybeck 1979, pp. 164-167],

#(e) = lx(e) [y, , t=1,.00,k]
and the covariance is deflned as
P(t) = B[(x(t) ~ 2(t))(x(t) - &(t))T)
- ela()ax7(s)

where
ax = x(t) - g(t) = ¢(t.tk)x[tk)

+ It ot t)Blc)as(x) - o(t,t,_1)R(ty-q)
b
= ot t, )ax(e,) + It o(t,7)B(x)as(1)

k
then

P(8) = ellole.t, Jax(e,) + | o(r,0n(c)as(s)]

Ey

lole b Jax(e,) + | o(e,0)e(c)an(x)]T)

by

= E{o{t b, )ax(t, ) axT (v, JoT(t, )]

(4.18)

(4.19)

IYWEN

(4.20)

A
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1 b eT(aT( 1T

; + E[o(t,t, )ax(t,) l a8™(1)87(x)s(, 1)]

: k

vol [ oleelalelas(e) ofer, Jax(, )]

K

b + olt,t)B(t)as(t)ag (s)B (s)e (t,s)]. .21

. [ (t,7)B(t)as(<)as"(s)8T(s)e"(t,s)] (4.21)

; tk tk

] Now, assuming that ax(t,) and  dg(x) for 12 t, are

% uncorrelated, i.e.,

g Elax(t,)as™(«), t2¢]=~0 (4.22) :

and noting that ¢(t,r) and G(t] are non-random, and that
E[ds(1)ds(s)] = Qs(z~s) , (4.23)

Plt) = o(t.t, )p(t, Jo"(t,t, )

+ [t ¢(t.T)B(T)Q(T)BT(T)QT(t,T)d'r (N.EN]

k%

Differentiating by Leibnitz rule and using Eq. (u.as),

) - alt)ele .t (e, )oT (et ) + ole,6,)p(t, )oT (5, )aT(t)

.- + o(t,1)B(r)al1)8T(1)e (¢, )| ik
|

. j‘ [a(t)s(t,1)B(x)alx)BT(1)6T(t )
t

K

+ ¢(t,0)B(1)a(1)B ()8 (t,1)aT(t) ]Jax
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Ple) = A(6)F(t) + B(£)aT(t) + B(t)alt)eT(z) (4.25)
Eq. (4.25) shows that, since Q(t) > 0, the covariance grows
between t, . and t.,,; by the integral of B(t)Q(t]BT(t] » Where
the matrix Q describes the error variance of the state
differential equation model error. This technique of augmenting the
P matrix by a Q matrix is in common use in filter algorithms. The
Space Séxtant software incorporates the Q matrix formulation
[Martin-Marietta, 1981] and it is wused in the GPS navigation

algorithm proposed in Chapter 5.

4.4 Sequential Consider Covariance Formulation

The state noise compensation method described in Section
4.3 prevents filter divergence when proper values for state noise
are used in the Q matrix. However, it has three disadvantages
when used for covariance analyses. First, the values describing
state differential equation noise tend to be arrived at in an ad hoc
fashion since the actual errors are unknown, just as the actual
force acting on the spacecraft over time is unknown. Second, and
more important from an error analysis viewpoint, is the difficulty
in isolating and evaluating the effect of specific errors in the
state model on the error covariance. Third, it is impractical to
analyze the effect of estimating a parameter that is causing large
errors, because the entire filter must then be redesigned.

To overcome these difficulties, consider analysis has come

PN
!
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into widespread use. This technique allows the effect of errors in
model parameters upon the dynamic state to be considered. Bierman
[1977, pp. 162-171] describes a hatch processor in which the state
vector is partitioned into a set of variables and parameters that
are to be estimated and a set of parameters whose effect is only to
be considered. After processing a fictitious set of noisy
observatgons, his algorithm then propagates the entire covariance
through desircd time intervals to determine the state error in the
future.

In the GPS scenario, however, observations would be
processed onboard in a sequential filter, thus the sequential
covariance analysis proposed by Maybeck [1979. PP. 325-336] is used.
This method assumes that a high-order "truth model" is available
that adequately represents the real world. It is given by the
linearized continuous differential equation

6 (t) = alede (8] + o (t)w (t) (4.28)

where Et(t) is an ny vector and wt(t) is an St vector zero-

mean white Gaussian noise sequence, with
Elg (t,)] = 0 (4.29)

Ble, (6, )eg (t,)] - Py (4.30)

Discrete measurements available from this model are obtained by
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Yolty) = Ho (e )e (6] + e (t) (4.31)
with
Efeg(t,)] = 0 (4.32)
Bley (6, )eg(t,)] = R(t,) } by =t
0 ty b . (4.33)

For consider analysis, the state vector Et contains both the
spacecraft dynamic state and constant model parameters. The dynamic

state, which is of interest at each time t , is separated by Et(t)

by

% (t) = c.g,(t). (4.34)

After arranging Et in a manner consistent with the desired
outcome, the Ct matrix can be partitioned into a p x p lidentity
matrix and a p x n,-=p null matrix.

The "truth model" is then used as a basis with which to
compare several reduced order candidate linear "filter models," each

described by the n-vector differential equation
g(t) = F(t)Elt) (4.35)
with

E[E(to)] -0 (1.36)
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¥ B[£(t,)E (¢ )] = g (4.37)
% and updated by mesasurements modeled by
9t;) = Hlx,)E(t,) + elt,) (4.38)
with
Ele(t;)] = 0 (4.39)
E[e(ti)eT(tj)] = R(t) ) =t
0 by ety (4.10)

The Kalman filter for these filter modzls is the same as described

in Section 4.2. Again, only a subset of this state vector contains

dynamic terms, thus

x(t) = ce(t) (4.41)

where C is a p x p identity matrix plus a p x n-p null matrix.

To compare these two models, form the augmented state

vector
g g, (t)
, g (t) = | . (4.u2)
; 2 E(x)
E with
g
7 Pto 0
: Palty) = Elg (6o)ealtg)] = | 5 (4.43)
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This augmented state is propagated by

where ¢a(tk,tk_1) is an (nt+n)x\nt+n) state transition matrix

tha’, satisfies

.

Saltatq) = A (t)e (et ) (4.35)
with
altyoqitynq) = 1 (4.46)
and
alt) o
Ade) =1 o a) (4.47)

Since the state vectors £ (t) and &(t) contain botn
dynamic and constant terms and the consider analysis produces a time
history of state errors due to these terms, it is convenient to
represent ¢a by its components. The two dynamic state transition

matrices are

axt(tk)

¢t(tk’tk"1) = ax.-t-ltk_«‘) (u'us)

and

ax(t, )

ot ity _y) = e ) (4.49)
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while the two state parameter transition matrices are

ax (t ]
Bty tyey) = otk (u.50)
3y (ty_y)
tot tk-g

and

w(tk’tk—1) - __EfEEEZ__ (4.51)

*
ac*E(e, _, )
where C: and C* select the parameters contained in Et and é.
The augmented state covariance is moved forward in time via
T

Falty) = o (tyaty g )Py (b oaltut, ) (4.52)
Measurement processing gives the state measurement update:

gt ) =M (¢ )E (¢, ) (4.53)

where

I 0
Malty) = [K(tk)ﬂt(tk) [I-K(tk)H(t.J]] (1.5)

and Ht(tk) contains partials of the measurement with respect to

the entire truth model state,

The covariance is updated by
Palty) = M (8, )P, (e, T (e, )
a‘“k a‘‘k/ a‘k k

+ Ka(tk)Rt(tk)K:(tk) (4.55)
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K, (t,) - [K(ik)] (4.56)

Note that the covariance of interest is actually

Po(t) = E[n,(t)ng (¢)] (4.57)

where

n(e) = x(t) - x.(t) (4.58)

This covariance is obtained from Pa(t) by

P.(t) = c P, (t)c] (4.59)

where

Cy = [-cy [ €] (4.60)

1f x(t) consists of ¥ and ¥V, then P contains the sum of the
6 x 6 upper left submatrices of Pt and P .,

This approach to state covariance analysis assumes that
the filter operates 1independently of the higher ordgr truth model

and that the errors in the truth model given by Pt are realistic.
(o]

If this is true, Pn(t] will represent the actual errors exhibited

by the filter in use. As in the state noise compensation technique,
hovever, the actual error of a dynamic or geometric parameter may

not be known. 1ln this study, normalized partials are used to

e,
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3
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determine the sensitivity of the state to a unit error in each of

the parameters.

4.5 Application to GPS Autonomous Navigation

COVSEQ is a computer program devised to implement the
sequential consider covariance analysis method for a GPS satellite
navigation receiver. Variables and parameters estimated or
considered in the program are given in Table 4.1.

The program makes use of the propagation capabilities of
the University of Texas Orbit Processor {UTOPIA) to obtain a user
satellite file containing the spacecraft state (FTt). V(t]) and
partial derivatives, ¢a(t,to] for the several parameters available
in UTOPIA. Since UTOPIA does not produce partials for the state
with respect to 1lunar and solar mass and position errors, these
partials, along with all geometric measurement partials, are

computed in COVSEQ. UTOPIA produces ¢(t,ty) and w(t,ty), while

COVSEQ requires ¢(tj+1'tj) and w(tj+1,tj). This converrsion is
described in Appendix A. The output of COVSEQ is a time history of
the error covariance, Pn , after a set of GPS range and/or
integrated doppler observations is processed at each desired step.

The error covariance is propagated according to Eq. (4.52) and

updated at each observation time by Eq. (4.55).

e
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4.5.1 Pseudo-Range Observation Partials

Measurements available to the GPS vehicle include pseudo-
range and integrated doppler counts. For the L3 crosslink, the
pseudo-range model is given in Eq. (3.1) and state and consider

partials are:

x--x81 y¥g %7Zg

Py Py Py

to00...

Hx(§k) =

1 80y g ey oy 3pp  dpp 4 3pg

¢ aAtu c aAfu I3 5F c aAts ¢ aAf

S5y

where 3} ’ Atu , and Ats are defined in Section 3.2 and the other
i

geometric partials are given by

3p
—Llag-t (4.62)

1
c BAfu o)

= sensitivity of observation to a user clock frequency bias

3‘5.1 3;1 3-51 3-‘;1
| . 9y, oz
arsi Sy 8y s1
- - RTN
[Hx1 H Hxs] [Tecr] (4.63)

= sensitivity of observation to GPS ephemeris errors

e e e s R g K
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expressed in a GPS-centered RTN coordinate system
op
1 i _
T B¢ ! (u.64)
s
i
= gensitivity of observation to a GPS clock phase bias
3p.
1 i
T3 "'(t - to) (u.65)
%

= gensitivity of observation to a GPS clock frequency

bias

, 4.5.2 Doppler Measurement Model

When a signal of frequency fg is transmitted by a moving

source from t1 to t2 and received by a moving receiver between

] T

1 and Ty s the received frequency, fr y differs from fg due to

the well-known doppler shift. When the received frequency is

compared to a known oscillator output, fu ’ the resulting

uifference is then integrated to produce the doppler count:

T2
N = J (fu - fr)dT

1 A3

T2 T2
..I £ dr - I £ dr (4.66)
Y Y
but fr undergoes the same number of oscillations during T, T
as does fg between t2 and t1 , thus

PN

W,
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2 t2
N = fudr - fg dt . [14.67)
Y &
Now assuming that fu and fg are the result of stable oscillators

such that they are constant during the intervals used and noting

that t and t are related by

= 2
T t + >

(4.68)
where p is the geometric range and c

the speed of 1light
(¢ = 3.0 x 10® m/s), the doppler count is then

£
N = £ty - 1) - rglay = vy) + 2 oy - o)

< (g - )y - 1y) 2B (8 = ) (4.69)

Since Eq. (u.69) was obtained for perfect frequency standards, it
must be modified to include errors in frequency, even though they

are small for GPS clocks. Expressing the true oscillator output as

a nominal frequency, f* , plus a first-order term, Af , Eq. (4.69)

becomes
* *
N= (r] - fg)('rz - 1) + (af, - Arg)(r2 - 1)
f* + Af
N g g

. (b2 - 01). (4.70)

Noting that for GPS-to-GPS communication f: = f; y and multiplying
both sides by .S

f
g

[ i
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.
Af Af af
Sro || () [ 1o =E| (o -0) (0m)
g rs fs fs

*
Now, fg for L3 is approximately ‘|09 Hz, while the frequency

stability, Af/f is on the order of 107'2, thus &£ << 1. Note

also that E% represents a delta range measurement, thus
f
g

do = clory - se)(vy - 1y) + 0y - 0y (4.72)

where 6f = .%‘l .

4.5.3 Doppler Partial Derivatives

The partial derivatives of Ap can be computed at either

Ty or Tp . Assuming that the receiver integrates from tq to 12

and then estimates the spacecraft state at Ty » the observation-

state partial derivatives are:
a, Position and Velocity

3hp ap(Tg) 39(‘(1) 3)((‘{1)

(1] T WAT,] T AR, ) W(w,)

- P "Po '93

where ¢(T1,12) is the state transition matrix from T, to 1, .
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b. User Clock Bias and Drift

e - 0 (4.74)

3%%2‘ = '[2 - T] (ul75)
u

¢c. GPS Clock Bias and Drift

- 0 (4.76)

S

’o%éf& = (1 - 1) (4.77)

g

4.6 Model Determination

b.6.1 Geopotential Coefficients

The major geopotentiaal source of secular motion of
satellite planes is the well-known Jo  perturbation. Jo
mathematically models the equatorial bulge and causes a regression

of the nodes given by

. 3 Re 2
QJ --54Jd ;——__ET n cos i (4.78)

2 (1-e

where
R, = equatorial radius of the earth
a = orbit semi-major axis
e = orbit eccentricity

n = orbit mean motion
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i = orbit inclination

The effect of neglecting J2 is shown in Figure 4,2, where 1t is

Seen that the error normal to the original plane of 873.6 km builds

up over 60 days,

The other main geopotential perturbations are due to terms

which are resonant with the 12~hour orbit Period. These terms (1/2

and l/k]'do not cause large s*ort-term (less than one day) out~-of -

pPlane motions but ecan lead to along-track errors large enough to

affect user navigation accuracy, Figures 4.3 through 4.8 show the

error growth due to neglecting these terms, while Figure 4,9 shows

the worst-~case out-of-plane error due to neglecting C,S 3/2. The

in-plane error plots also include the error due to propagating

initial position and velocity errors. This error reaches 38,459 km,

and vwhen it is removed from the analysis, the remaining in-plane and
cross-track errors are as shown in Table 4,2.
TABLE 4,2

CONTRIBUTIONS DUE TO NEGLECTING
GEOPOTENTIAL TERMS

Maximum Error Cuntribution of Outfgg—Plane

Neglected After 60 Days Geopotential Motion
Term (km] km m
J, 2064.340 1925, 871 873608.0
c,S 2/2 44,669 6,214 17.6
c,S 3/2 167.363 128,897 355.0
C,8 572 39.038 0.5§g 0.0
C,S T/2 38.14595 1 x 10 0.0
C,S u4/y4 53.3249 21.086 0.0
C,S 674 38.4637 0.005 0.0
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These results show that a model used to predict over time intervals
longer than one hour should include J2 and C,S 3/2 and 4/4 terms,
while predictions of approximately 10 m accuracy over one hour can
be achieved with J2 and C,S 3/2. Note that the out-of-plane
motion due to the J2-induced regression of the nodes 1is the major

secular planar effect and that C,S 3/2 cause a smaller but

significant motion of the orbit plane.

4,6.2 Solar Radiation Pressure

The effect of neglecting solar radiation pressure is shown
in Figure 4,10, with the maximum error being 2606.9 m. For this
case, the effects are almost entirely in-plane, but periodic planar
movement can be determined from eguations as given by Geyling and

Westerman [1971, p. 123] as

. F_. sin a sin i_{sin 6, - sin @
n“mr,
and
. F_ sin a (cos 8, -~ cos 6 )
8 zP 2 ! (4.80)
n? m r,

where the sun is assumed to be in the equatorial plane at an angle

a from the satellite ascending node, and

F o= i§,7h x 10-6 (1 + n) A newtons (4.81)

p

"
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for a satellite of mass m , cross—~sectional area A , reflectivity
n and radius r. that enters eclipse at 8; and exists at 8y .
This motion only occurs when vehicles are eclipsed by the
earth, so the onboard model must include eclipse computations. The
fairly large in-plane error caused by neglecting solar radiation
pressure is more significant than a similar sized geopotential
effect, because solar parameters are highly variable, whereas
geopotential terms may be regarded as constant. It 1is this
variability that requires the solar reflectivity to be estimated by

the onboard filter.

4,6.3 N-Body Effects

The acceleration of a satellite near the earth due to the

presence of a third body is given by Geyling and Westerman [1971, p.

113] as
-y Irp(r ' T
o . ::f. - —-2—;5———2 (4.82)
p p

where Up and rp refer to the perturbing body, and r refers ¢to

the satellite with motion referenced to the earth, When transformed
to orbital elements and averaged over one satellite orbit, the
results show a periodic effect in orbit inciination and a secular

change in the ascending node of

3u r3
8O o = - —E— mcos 1 rad/orbit (u4.83)
Z“e"p
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For GPS orbits, these rates due to the sun and moon are
AR - -5 x 1070 rad/orbit (4.84)
sun
A0 = -1 x 1072 rad/orbit (4.85)
moon

and after only one month (60 orbits), the cross-track position error

at the node is 24 km.

Note that 4R, . , to first order, depends only on orbit
inclination and radius; thus, each GPS satellite will experience the
same effect, i.e., the whole constellation will precess and the
results will not be observable from satellite-to-satellite tracking.
Therefore, lunar and solar gravity must be modeled in the onboard
propagation software. As for the planets, their effects are at

least U orders of magnitude below the sun's [Geyling and Westerman,

1971, p. 113]; thus, 6-month errors of less than 15 m would be seen.

4.7 Relative Navigation Accuracy

To predict the performance of a model when used in a
relative navigation filter, the consider analysis program is run in
a filter mode in which observations are assumed to be processed from
each visible satellite every 60 minutes. Model errors include earth
geopotential terms, as given in Table 3.3, and solar radiation
pressure, as shown in Table 4.2. This table also shows the
observation, satellite ephemeris and clock errors simulated,

When errors in model parameters, other satellite positions
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and clock bilases are considered and observations processed, the
Position error stays below 7 m for 60 days (Figure 4,11).  However,
as shown in Figure 4.12, when errors due to a clock drift of
1012 sec/sec are included, the error grows to 2.391 km. Estimating
both bias and drift along with the vehicle state brings the maximum

error down to 40.8 m as depicted in Figure 4.13.

4.8 Consider Analysis Summary

The model suggested for the GPS autonomous navigation
algorithm includes lunar and solar gravity and the earth
geopotential thrcugh J2 and C,S 3/2 and requires that solar
radiation pressure and each GPS vehicle clock bias and drift be
estimated. Including these terms in the consider analysis, plus
errors described in Tables 3.2 and 4.1 for relevant terms, gives an

overall one-sigma accuracy of 40.8 meters over 60 days.
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CHAPTER 5

GPS NAVIGATION FILTER

5.1 Introduction

The onboard navigation filter that each GPS vehicle usas
to determine its navigation state is a compromise between numerical
accuracy, size, complexity and speed. Since current microprocessors
do not have the word length or speed of mainframe processors, the
filter must be designed to fit into a 1limited storage and time
environment. As in the previous sections, it is assumed that each
visible GPS satellite is tracked every 36 seconds and that the
pseudo-range and integrated doppler observations are smoothed by &
local curve-fitting procedure to produce one pair of observations
per satellite each 60 minutes. A sequential filter then processes
up to 14 pairs of range and doppler measurements and updates the
navigation state each hour.

An alternate approach to the sequential filter is to
collect smoothed observations for several hours and process them via
a batch algorithm at the end of the observation span. This requires
the covariance matrix and state to Le propagated over much longer
intervals, however, and would require more accuracy and

sophistication in the dynamic model. This approach is worthy of

study, but this analysis assumes a form of the extended Kalman

sequential filter (EKF) to minimize propagation intervals. Other

139




U TG PR IEAT 2 (T Sl 0 Nk ST T

.
-
;

140

studies have been performed on satellite navigation algorithms,
e.g., Tapley, et., al. [1981]. and square root formulations of the
EKF have proven stable, efficient and accurate for autonomous
navigation wusing GPS signals. The results of Tapley, et al., are
directly applicable to the GPS autonomous navigation problem since
they studied estimation algorithms, dynamic models and numerical
integrators for onboard navigation of LANDSAT-D-type satellites.
The main differences are that GPS 1is higher (semi-major
axis = 26575 km vs. 7087 km) and that the onboard filter is actually

a local filter solving a part of a global problem., The local filter

aspect is addressed in Section 5.3.

5.2 Filter Model

The dynamic model selected for the GPS navigation filter
algorithm differs from the LANDSAT-D model in that the higher
altitude puts the satellite out of the atmospheric drag regime and
into the area where solar radiation pressure and luni-solar gravity
terms become significant. As noted in Section #4.6.3, 1lunar and
solar gravity effects are unobservable in satellite-to-satellite
tracking if the satellites are in the same orbits, and accurate
models for these effects must be included in the dynamic model.
Fortunately, 1lunar and solar ephemerides can be predicted
accurately, and their masses are known to high enough accuracy that

their gravitational effects can be modeled instead of estimated in

PN
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the filter.
Solar radiation pressure, however, is not as well modeled,
and the satellite coefficient of reflectivity, n , and its rate,

n , must be estimated along with the satellite position, velocity,

clock bias and drift, as discussed in Chapter i,

The state vector for GPS #i is then

X4
- - X2
T X3
v Xy
CAt0 x5
X = . (5.1)
CAf/f x6
n
. X7
n
L _ Xg
X9
10}

5.2.1 Dynamic Equations

The dynamic model used to propagate the state by the

nonlinear vector differential equation

x(t) = F(x(t),t)

is

N A : e
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i g *ag * Py + Pt e,
CAf/f
% F(x(t),t) = (5.2)
% fe
n
¥ 0
B - .
E where ‘
li;%
% 3, = gravitational acceleration of the earth
: 3, = acceleration due to solar radiation

: Ps = perturbing acceleration due to the sun

/ Fﬁ = perturbing acceleration due to the moon

and the stochastic forcing noises have the following statistics
E E[e(t)]y = 0 (5.3)
Ele(t)eT(x)], = qp6(t~1) (5.4)

where £ denotes the 3 x 1 vector acceleration process noise,
€, , or the scalar clock frequency drift noise, ¢, .
The nonlinear state differential equations are linearized

about a nominal state vector to produce

x(t) = a(t) x(t) (5.5)

where




73 4, TG I

e T SR R, X L BOE T e, T

TP TR A

———
..

Wﬁ%"{%’:’m;«m«»wme B R R T
boid

143

ale) - OGN, e 1) (5-6)

v v v v v

r 3v des In  an

3¢ v odes on 9N

—— et t——— w—— mam——

o 0o 0o 0 o

where c¢r 1is the clock rate, ce 1is the clock error and cs is

the clock state. For this application,

roms g

o{3x3)  1(3x3) o(3x2)  o(3x1) o(3x1)
A5 (3x3) o(3x3) o(3x2) a,,(3x1) o(3x1)
0(1x3) o(1x3) A33(1x2) 0 0

| o(3x3) o(3x3) o(3x2)  o(3x1)

The entries of A are described in the following sections.

5.2.2 Geopotential Model

As discussed in Section 4.6.1, earth geopotential terms,

with the exception of J, and C,S 3/2 cause along-track secular

and periodic perturbations that are small during the one-hour
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propagation interval and are observable in satellite-to-satellite
tracking. The effects of J, are large and include both tangential
and normal excursions and are thus unobservable to the navigation

system, They must be included in the dynamic model, which becomes

— -
~u x1/r3 (1 + a)

T, = | -n x2/r3 (1 +a) (5.7)
1
. x3/r3 (1 +8)
where

r=/ x$ + xg + x% (5.8)
o2

a=1.54, ;% (1 -5 x%/rz) (5.9) \
o2

. e (2 .22
B =1.50J, " (3-5 xg/r ) (5.10)
J, = .001083 (5.11)

For the dynamic model given above,

a a a
11e 12, 13e
A
21 = | a a a (5.12]
e 12e 22e 23e
a a a
13, 223, e

where
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2
- 34,R .
3, = _% (1 - 3x3r8)(1 + ) + % € x2 (1 - 10x§/r“] (5.13)
e r r
2
3J,R
a1ze - (3ux1x2/r5)(1 +a) + -:%rg x1x2(1 - 10x§/r2) (5.14)
- 2
3J,R
313e - (3ux1x3/x5)(1 +a) + ;? £ X1x3(6 - 10x§/r2) (5.15)
2,.2 395Rg 2 2,.2
a22e ..J% (1 - 3x5/r5)(1 + a) + > x5(1 - 10x5/r ) (5.16)
r r
2
3J,5R
a23e = (3ux2x3/r5](1 +a) + ;i £ x2x3(6 - 10x§/r2) (5.17)
2
3J,R
U (4 au2,.2 2Re 200 2 2
a33e - (1 3x3/r 1+ 8) + " x3(8 10x3/r ) (5.18)

The acceleration due to C,S 3/2 is computed by rotating
the satellite position vector to the ECR coordinate, computing
satellite latitude (¢) and longitude (1), and taking the gradient of

the 3/2 geopential term:

R
Ugp = & (F)3Pg,(sin )

[C35c08 21 + s3,sin 24] (5.19)

where C32 and 832 are the spherical harmonic coefficients and
P32(sin ¢) is the Legendre Associated Function of degree 3 and

order 2 for the argument sin ¢ . le can be computed recursively
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from the equatijon
PQ‘"(Sin ¢) bd Pl_z'm + (22"1) cos ¢ P2_1’m_1 (5'20)

where Po. = 0 if m> L. Thus, P32(sin ¢) 1is obtained from

(5.21)

Poz(sing) = 3 cos ¢ Py, (5.22)
where

Pyy(sing) = cos ¢ . (5.23)
Thus,

P3o(sing) = 15 cos> ¢ (5.24)

Entries of A,, for C,S 3/2 are not computed since the
e

perturbation due to these terms are so much smaller than for J2

and would thus affect the orbit over relatively long prediction

times.

5.2.3 Solar Radiatior sodel

In this analysis, the same solar radiation model is used

in the onboard filter as is employed in UTOPIA. The acceleration

dus *o radiation pressure is given by McMillan [1973] as

t

-

(5.25)
s 3
l"V

(2]
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2
%
% where
} Ps = solar radiation pressure on a black body
? Ps = sun's distance from earth
) n = satellite surface reflectivity
!5,
% A = satellite effective area
;- m = satellite mass
£ -
E ?Qs = sun-satellite radius vector = rrg
? Y = shadow indicator
%: For a spherical earth and cylindrical shadow,
. Ts 2 _ 21172
; Y=0 if T — <0 and (re - re) <rg (5.26)
2 Y = 1 otherwise (5.27)
';
i The partial derivative matrix is
}
a A a
113 12s 13s
Ay, . (5.28)
1 a a a
. 21 12y %22, ‘3,
: a a
; 3, T23, "33,
, _ .
H
H
7 where
2 AY (""‘s)2
4y - psrs(1+n) 3 L (5.29)
mrYs Tvs
20y xg)y-y,)
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(x-x_)(z~z_)
ayy = -3Pst‘§(‘*“]%1““'i§"“§" (5.31)
s r
vs
(y-y.)°
822 = psp§(1+n) A; 1 - 3——-—2-§-—— (5.32)
S Mres Tys
) (y-v,)(z-z,)
2 AY 3
3, = - ten)AY T8 87 (5.33)
vs
2
(z-24)
33, - perllism)AL | ¢ - 58 (5.34)
s nr
vs vs
Azq is then a vector given by
s
Ar.
s mres

5.2.4 Lunar-Solar Gravity

The perturbations due to lunar and solar gravity are given

by
T -
S A
.FS = —us 3 + 3 (5.36]
r A
s
where
?g = yvector from earth to sun
B =T -7

S
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g us = GMS i
4 and
§ ;ﬁ A
Po= o | 305 (5.37)
r A
m
where
Fﬁ = vector from earth to moon
i T =7 - Fh
.
Hp = GMp

The vectors T_ and T, are computed by assuming Keplerian orbits

for the earth and moon and solving Kepler's equation for each time
point. The partial derivatives of P; and Fﬁ can Then be
obtained by a straightforward differentiation of Egs. (5.35) and

(5.36).

5.3 Decentralized Filtering

The problem of estimating the state vector of each of 18

5’ GPS satellites from satellite-to-satellite pseudo-range and doppler
K % information is a global estimation problem, since the measurement

; errors are a function of other satellite position errors as well as

% ranging system errors. To solve this problem on a global scale

g would require a "supervisor” system with knowledge of all spacecraft

3

% and measurement errors. If, at the other extreme, the situation |is
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handled by 18 decentralized processors, each solving the local
estimation problem with no cognizance of the other spacecraft
errors, an unstable solution results. Any GPS position error
outside the range expected by the a priori measurement covariance,
R , would quickly lead to filter divergence in the other processors.

This situation is similar to that faced by the Joint
Tactical Information Dissemination System [JTIDS) in its airecraft
relative navigation mode as described by Kerr and Chin [1980].
Since the two problems are alike in that each vehicle's state is
independent of the others but measurements involve information
exchange among the members, it is possible to cast GPS autonomous
navigation as a relative navigation problem and apply known
techniques of decentralized filtering.

Applying the methods described by Kerr and Chin to the GPS
problem, the system state error is described by a linear
differential equation of dimension 13 Ny ox 1

where ny is the

dimension of each spacecraft state

x(t) = F(£) x(¢) + w(t). (5.38)
This system can be expressed as the collection
{Si , 1i=1, 2,...,18 of separate dynamic systems:

having interconnected discrete measurements available to the ith

[ERN Y
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satellite:

Yile) = ule )x(e,) + v (e, )

) [};i{tk) | ai(th] L (t,) x(t ) + v, (e,)  (5.40)

n
! i
where Mi(tk) is the projection operator from R" to R * , i.e.

X (ey) = My (e, ) x(t,) (5.41)

and Li(tk] selects those components of .K(tk) that appear in

BG(X(tk,tk)/axi(tk). Thus

~

Yilte) = mltg)x, (¢, ) + Hy (g e (8, )x (8, ) + vy (e, ) (5.42)
and L, (¢, )x(t,) contains no component of x;(t,) directly.
It is assumed that w

i(t) and vi(tk) are zero-mean white noise

processes that are uncorrelated with "j(t)' Vj(t] and xj[o) for

J=i.

Looking at the specific example of GPS-GPS pseudo-range,

assume that vehicle i 1is tracking vehicles 1-3 at t = tk. The

measurement matrix, H; for a satellite state vector of dimension

10, containing T, V, clock bias, clock drift, reflectivity and its

rate is
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o ﬁgﬂ”‘“w»&!&";‘\'w“ WG

st Lo - S A - < o

—~ ' - (5.43)
xli ) xll xzi T2 x3i ) x31
5 5 0001000
1 1 y
xli - X12 Xzi - x22 X3 - x3
H, = 1 20001000
1 P p I
2 2 2
ST P 2 P *
5 5 5 0001000
3 3 3
- _
for
T
X; = [FVcAto-créin n:l (5.44)
(o]

£.3.1 Decentralized Filter Algorithms

As discussed by Kerr and Chin, the Surely Locally Unbiased
(SLU) [Sanders, et al., l973] and the Sequentially Partitioned
Algorithm (SPA) devised by Shah [1971] are stable solutions to the
relative navigation problem. While the SLU filter is unbiased, it
requires that the rank of ﬁ be less than the row dimension. This
is not satisfied for the pseudo-range observation [and for
integrated doppler), thus the SLU algorithm is not applicable.

According to Kerr and Chin, the SPA filter has been shown
to be asymptotically stable, but it is not analytically unbiased.
They state, however, that this potential problem can be handled
adequately and recommend the SPA as the algorithm for JTIDS

navigation processors. Biased solutions are, however, a potential

problem area in GPS navigation and must be investigated.
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5.3.2 Derivation of the Sequentially Partitioned Algorithm

R
[
?
3
!
A
e IS P AL HMALI e S B 38 j

Following Kerr and Chin [1981] with appropriate

modifications for GPS, define the local system

S0 TR et A g TLATH RS fy TR SO

x; (k+1) = o (k+1,k)x (k) + w, (k) (5.45)
H with observations
8
g v (k) = Hlk)x(k) + v, (k)
% ¢
- ﬁi(k)xi(k) " f{i(k) ;; Ly () (k) + vy (i) (5.46)
j#l

where

ﬁ(tk) =p ° ny x 1 vector for p satellites with n;  states

each

x¢(t,) = n, x 1 state vector for satellite i

Lij =m X nJ submatrix relating m observations from

satcllite j to satellite |

A L (5.47)
(e, )

Hy (k) -mac(i(t&)';k) (5.48)
i‘Y'k

i) - ot (5.49)
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Now, define the state estimation errors

ei(klk] = xi(k) - Ri(k)

and

.ei(k|k-1) = xi(k) - ig(k)

where

8 (k) = E[x; (k) |y(x)]

and
§;(k) = ¢i(tk,tk+1) 2i(k-1).
Then
- . 18 )
yilk) = H(kdx (k) + w (k) ] Ly (k0% (k) + v (k)
3=1
341
where

Now, assuming

1. Eﬁ(k) is known for jei, j=1, 2, ..., 18

2. eJ(ka), ej[k]k-1) are Gaussian and
j=1.2,....18. J=1 ,

Y T A WA it A £ W s e

white
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(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)
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3. Vi(k) 1s Gaussian white measurement noise

then the Kalman filter can be applied [Singh and Titli, 1978] to

provide

Ry (k) = B [vy(k]w¥] ()] (5.56)

. 18 _ -
- Ri(k) + Hl(k) b Lij(k) Pj(k) Llj(k) Hi(k)
j#l

where

?b(k) = E [ej(klk—1)e§(k|k—1)]. (5.57)

The state error at tk+1 is updated by

2, (k+1) = X (ke1) + K, (ke1) [y, (k1) - ﬁi(k+1)§;{k+1)

~ 18
~ Hi(k+1) 121 Lij(k+1]§3[k+1)] (5.58)
j#l
where

~ ~

Ki[k+l) = F}[k+1]ﬁ€(k+1) [Hi(k+1)5}(k+1]§§(k+1)

+ R*i(kﬂ)]"1 (5.59)

and the state error covariance is updated by Joseph's form

~ ~ ~

P (ks1) = [I-Ri(k+1]Hi(k+1]]?;(k+1)[I—Ki(k+1)ui(k+1)]T

. R(k+1)R*i§3(k+l) (5.60)

P
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in the extended filter where the state correction is added

to the state after each measurement update,

Xi(k+1) ='Yi(k+1] + ii(k+1] (5.61)
where

ﬁi(k+1) = Ki(k+1)yi(k+1) . (5.62)

Comparing the SPA to consider covariance analysis, it is
seen that, for no interconnection in the dynamic model, the SPA is a
consider filter in which errors in GPS vehicles' positions and

clocks are considered.

5.3.3 Sequential Processing of Pseudo-Range Observations

For the case of GPS i obtaining pseudo-range
observations from one satellite (J) at a time in a sequential

receiver, assuming

T | == ALy
Xp = rv bty ——=nn
-(xy %, ) (Xz.'xei) ’(x3.'x31)
H, (k) = 42 Y J 000-1000.,.
i P p P
|-
(1 75y ) (xg ) (o %3
.0 0... : J J 000-1000...
o p p

(5.63)

RS R Pt o e —ww—w e o
3
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with zeroes for all partials with respect to X L=2iorj.

9/ ]
This vector is then separated into

) j i i “i j i
Hi(k] - : ; 000-1000
- e - -
=[h1h hy 000 h7ooo] (5.64)
and
Hi(k)-[-h1 -h, -h3000—h7000] (5.65)
The L matrix for this situation is
LR-[O] for %+ j (5.66)
and
Ly = 111 0 (5.67)
0
0
0
Lo
0 0,
Now, define
5 (T |21
o = H, (k) 221 Lig Py Lyy | H (k)
2=
~[h1h2h3000h7000]LUPJL1J[h h h3000h7ooo}
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2 > =2
vy :e"e?.j * 3"33J * haPog

=
b~ 20 ]

J

- ~

1Py

>

+2(;1 +;1F + P
1
i 3 13J 273 23J

SN R Nl TEITIME U0 0 P { SOTIGL ST 8 S R LA AR AR W"ij
.

-~

1

1 7P17J ¥ h2 7P27J * h3 7}.;37J ) (5.68)

+h

AN gt
'

then

TR

RIS T

Ry(k) = B (ke1) + (5.69)
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5.3.4 Sequential Processing of Doppler Observations

When processing integrated doppler measurements in a

sequentially partitioned algorithm, the measurement matrix is

H, (k) = J_ 1 b1 .1 v9000r00...

I 6000-100...0] ¢(1.,1.)
p 1 1'°2
1

(5.70)
where 1 1is the receiver time tag and T, = tk . For the short
time interval, =1 "1, = 1.5 sec , thus

2

¢(11,1 TI (5.71)

and
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(5.73)

As in the case with pseudo-range observations, this vector

[for one observation) can be separated into

-~

H, (k)

-~

RERINCHERENCE)

L]
—
—
oo 28 |
—_
—~—
-
&)
—
]
ot

-~

(h3(12)-ﬂ3(11)) 0000 Be 00 ]

and
() = (-0 () (x,) = (hy(5,)- b (x,))
~(hy(7,)ng(x,)J 0 000 -hg 0 0 ]
with

ig
i 7 14 0
1
0
0
0
01
0 0O
Now, define
A N _ 'I‘ "T
B = H,(x) 221 LipPolyy | H; (k)
fei

(5.74)

(5.75)

(5.76)

(5.77)

(5.78)

et at e BT ANt b srarn e e S o Ko din s b

AL 211 5 2 et s NS bt v %7 i

. —— e




™

R e

o

" g -

™y
-

£,
&
|

R e L A R
ISR

161
and
s, = h () - n (1) . (5.79)
Then
- “25 ey s
B = APy, + AP, BhgPas ¢ hgPag
J J J J
+ 2(Ah1Ah2P12_ * &by AN,P L+ AhANoP
J J J
+ 8hingP o+ ahohePoe v Ah3h8P38.) (5.80)
J J J
and
* .
Ri[k+1) = Ri(k+1) + B . {5.81)
Note that the transmission of data from satellite j now
requires
— -
Pii Pia Pyg Pyp Pyg
_ Paz Po3 P27 Pag
P, - o (5.82)
Pi3 P3y Pig
P11 Pas
b —

5.4 Numerical Resul:s

The Sequentially Partitioned Algorithm was included in a

computer program (GPSNAV) that solves for corrections to the state
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vector defined by Eq. (5.1) for each of the 18 GPS spacecraft. The
original program employed a U-D filter as described in Appendix B,
however, numerical instability in the propagation of the P  matrix
on the Cyber computer 1led to the decision to use a standard EKF
formuiation with Joseph's form of covariance update and propagation
via the state transition matrix,

Each spacecraft receives range and doppler from all other
visible satellites each 60 minutes. It also receives the covariznce
information defined in Eq. (5.82) at the time of transmission from
each of the other vehicles, Range and doppler information was
generated from a UTOPIA model incorporating an & x 8 earth
geopotential, solar and lunar gravity, solar radiation pressure and
clock bias and drift errors using the force models discussed in
Chapter 4 with parameter and initial state errors as given in

Table 5.1.
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. TABLE 5.1
4 UTOPIA-GPSNAV COMPARISON
; Model UTOPIA GPSNAV
i Geopotential Thru C,S 8/8 Ji C,S 3/2
El
E Solar Radiation Eq. (5.25) Eq. (5.25)
3 conical shadow cylindrical shadow
E Lunar-Solar JPL DE-96 Two body ‘
g Ephemeris |
% Model Error f
5 u -- 0 ;
g, 3
4 -2 i
= J2 -~ 3.4x10 “ ¢ :
.S 3/2 3.4 %107 ¢
; Initial State Error
£ r -- 0 i
: o
; v -
i Yo 0
% o_ -- 10 m
; r
o_ -~ .002 m/s
v
Initial State Values
n .22 22
n 0 0
- 0 - 10—5
n
0. -~ o]
n
- -5
%oat 3x 10 ;
-3 -6 3
Scat/t 10 3% 10
Range errors of 10 = 2.0 m and doppler errors of 10 = .00} m/s were
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added.

The model incorporated in the SPA filter is a reduced
order geopotential consisting of J2 and C and S 3/2 plus solar and
lunar gravity and solar radiation pressure. The filter estimates
all of the terms in Eq. (5.1) and has the capability to include
model noise (Q matrix) terms for acceleration and clock errors.

The program was run in a perfect clock mode in which clock
errors were neither added to the data nor estimated by the filter.
The results for satellite 1 (Fig. 5.1) show that the corrections to
T and the position variance stay below 5 m, while the observation
residuals are on the order of 10-15 m and that the solution appears
stable for the four-day run.

When clock errors are included in the data, however, the
results in Figure 5.2 show unstable results after about 80 hours.
This run includes no model noise for clock parameters. When a clock
drift noise term of 10_12 m/s is included in the noise compensation
matrix (Fig. 5.3], the solution is stable for approximately 17 days
with corrections on the order of 5 m and observation residuals of
10 m being seen,

When a four-day filter-determined ephemeris is compared
with the UTOPIA ephemeris, it is seen that the in-plane components
agree to within 40 m (Figs. 5.8 and 5.5) with 2 small secular trend
[2 m/day) apparent in the along-track direction, Out-~of-plane

errors, however, grow secularly at approximately 20 m/day. This
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br difference may be due to a combination of integrator/model
§ differences between UTOPIA and errors, an inability of the filter to

determine adequately the cross-track component of the vehicle's

-

clock error, or biasing of the filter algorithm. When clock errors
are removed from the data and the filters assume perfect clocks, the
error growth is reduced to 11 m/day (Fig. 5.6), thus almost 50
percent of the error is due to the clocks, Since neither of the
observable components (radial and tangential) show significant
biases, this very limited test indicates that the problem discussed

in Section 5.3.1 may not be significant.

:
3
F
j
§
E.

If this secular trend continues, the total cross-track
error would grow to 1.2 km after 60 days, but only a small
percentage of the error would appear in the user-GPS line of sight,
However, the importance of this error growth is not its magnitude

but the fact that any onboard orbit determination scheme based upon

e A S AN AN

satellite~to-satellite tracking will not observe similar planar
motion. To solve this problem, either the model must be tuned to
the specific application through much more extensive analysis and
testing, or the navication system must be augmented by a GPS
transmitter in a different altitude orbit or on the surface of the
earth or moon. A transmitter on the earth would solve this problem,
plus it would allow the navigation algorithm to determine the

earth-satellite orientation.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The conclusjions drawn from the discussion in the previous

sections can be summarized as follows.

1.

When compared with the space sextant, current design solid-
state matrix star sensors coupled with current horizon sensors

yield a factor of 16 worse navigation accuracy.

If matrix sensors can be used to measure the earth horizon by
star refraction to a precision comparable to the star position
measurement, they can provide better navigation accuracies
than the space sextant. A critical factor in this scheme is
the fact that, for a constant tangent height error, apparent
horizon sensor error quickly drops to levels near or below the
original actual sensor error a: altitude increases. A key
factor 1limiting refraction determination of earth horizon is

the accuracy to which atmospheric density can be predicted.

Since matrix sensors can be derated to match less stringent
program requirements, they can be used to provide angular
information with a precision varying from »>20 arcsec to

<1 arcsec with corresponding navigation accuracy.
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The space sextan’. has a greater ability to recover from loss

of attitude control than do the fixea sensors.

Atmospheric refraction uncertainties contribute approximately
1500 m to the error in the determination of ray tangency

altitude.

For navigation requirements of 50 m or less, the GPS receiver
is recommended. It 1is possible that a SHAD and/or a matrix
sensor may produce real accuracies of <50 m, but an analysis
of all relevant error sources is required to verify this

conjecture.

An onboard navigation system for GPS based upon sateilite-co-
satellite data transmission is feasible. However, this system
is inherently unable to determine similar motion of all
orbital planes and the earth. While earth angular position
can be predicted to about 50 ms over six months, this error,
in addition to planar motion, would cause errors normal to the

satellite plane to reach approximately 1.3 km.

The Sequentially Partitioned Algorithm provides a stable
solution for each satellite's state vector, including clock
parameters, as long as model noise compensation 1is wused.

Preliminary results do not show a tendency toward biasing.
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6.2 Recommendations

These recommendations are made following the previous

study.

1.

Development of the matrix sensor technology should be

continued.

Investigation of the feasibility of performing improved
horizon determination from star refraction measuwrements should
parallel sensor development. Current and future refraction
data should be used to improve atmospheric density modeling.

This is critical to the success of navigation by matrix

sensors.

Further refinements should be made in the analysis of the
matrix sensor measurement to include all error sources

affecting the measurement and its reduction to a navigation

measurement.

Further studies of GPS cross-link navigation should be

conducted to include:

a. A more detailed evaluation of filter performance with

respect to model and clock parameters.

b. Evaluation of navigation performance when augmented by

an additional transmitter in space, on earth and on the
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mnoon.

¢. The feasibility of including navigation information in
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the L3 cross-1ink.
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U-D filter performance when used with the SPA algorithm.
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APPENDIX A

CONVERSION OF BATCH PARTIAL DERIVATIVES TO SEQUENTIAL

The University of Texas Orbit Processor [UTOPIA) produces

precise estimates of position and velocity for spacecraft using

several iypes of observations, including laser range and altimeter

height. The basic batch and sequential algorithms are described by
McMillan [1973] and Wilson [1976].

A relatively recent addition to UTOPIA is the capability

of producing partials of the spacecraft state at observation times

(inertial‘?(ti) and V(ti)) with respect to the state and several
model parameters at some user-defined epoch. These model parameters
include Uy , “he spherical expansion coefficients (Clm' Slm)'
atmospheric drag, solar radiation pressure and unknown spacecraft

accelerations in the RTN coordinate system. The purpose of the

partials is to allow the program to interface with the JPL consider

covariance analysis program COVAN to produce a consider covariance

matrix at epoch (tOJ after processing simulated observations at
ty, i=1,...,k., UTOPIA does not simulate satellite-to-satellite
range or doppler observations nor does it produce a sequential form
of the ¢ and ¢ matrices required for long-term sequential
analysis of the GPS autonomous navigation problem.

It is possible, however, to convert the batch or epoch

forms of these matrices to a sequential form by the following
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algorithm:

A.1 Conversion from ¢(tj+1’to) to ¢(tj+1'tj)

Given the sequences ¢(t°,to). ¢(t1,to),

¢(t2'to)"°¢(tj+1rto) and W(tonto)o W(t]oto)o W(tzrto)"'W(tJ+1oto)o

we desire the Sequences ¢(t°,to], ¢(t1,t°), ¢(t2,t1)...¢(tj*1.tj)

and W(to,to], w(ty,t,), W(tg.tq]o--W(tj+1.tj)- Suppose a state

vector £ is composed of variables X and parameters 2 , then

ax(t, )
oty ,0,) - —1 (a.1)
BX(tj) £
ax(t, )
vt ,ey) - —L (a.2)
3z tJ) -
Note that
ax(t;) ax(c.)
¢(ti'tj) = i 0
ax(to) BX(tJ.)
80, for { = j+i, the sequential form of ¢ {is
2garrty) = 0ltga10t0) oltgrty)
= ¢(tj+1’to) ¢-1(tj'to)° (A-3)

This conversion of ¢ from epoch to sequential requires the

inversion of a 6 x 6 matrix at each step. This can be avoided when

the spacecraft force is conservative,

and thus only a function of
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position, by wusing the symplectic property of the A matrix.

Recalling that

:#(t.to) = Alt)olt,t,)

(a.4)
where (see Chapter 2)
a(t) - EMXL) | (2.3)
X X

If F 1is defined as in Eq. (2.3) then the A matrix is of the form

5
Alt) - Aty Aqo 0 1 (a.5)
A 9F 3F

ar oV

where Ay, are 3 x 3 submatrices of A(t) . If the perturbation,

and hence the total force, is independent of velocity, Eq. (A.S)

reduces to
Ae) =] o 1 1. (A.6)
oF
=0
_or
X4
Define T = X5 | » then
X
| 3

s —— e
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N : 2 ~ ~ (A-7)
: 3ux P Jux x 9 Jux x 3
' Bt =+ e
r T 1 r 2 r 3
~ . 2 ~ a-v
3F BUXlxz 3 2 TR 2 3P2 3ux2x3 _33
- 5 Y%, 3175 tox, 5 T ix
i Y r 1 2 r 3
. - . jod 2 3~
3\Jx1x3+i)i3_ 3u.\2x3+i?_3_ :H+3vx3+§f§
rS Bxl r5 sz r3 rS Xg
e —
: and, if P is a conservative rorce, tren
?
§ Yx P =0 (+.8)
4
i
S where
N T I
Vs b Y e
R 1 2 3
: For Eq. (A.8) to hold,
%
? o L %%
3P, 9P
W"’a‘i% (a.9)
o s
5?; 3%,

and the submatrix 35 is symmetric.
tid

The symplectic property of A(t) then states that if A(t)

can be expressed as
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Aft) = Ay Ay {(A.10)
Ay Ay
with
T
Ry = -ap;
Aip = Alp (a.11)
T
Bor = Ay
then
o{tat,) = | oyy 012 (v 12)
021 %22
L
and
¢(to,t] = ¢-1(t'to) . ¢22 -¢$2 . (a.13)

T T
“021 ¥

As discussed in Goldstein [1980], the state transition matrix for a
conservaiive system is a canonical transformation in time and,
therefore, satisfies the symplectic condition. The use of this
property can then replace the matrix inversion in Eq. (A.B) with a

simple rearranging via Eq. (A.13). If the perturbing force is not
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conservative, as in the case of atmospheric drag, then the ¢(t,to)

matrix must be irverted numerically.

A.2 Conversion of w[t1+1'to) to W(tj+1'tj)

To compute the sequenti.' form of ¢ , note the following

relationships for constant =z

x(ty) = altq,to)xlty) + wltqty)zg (a.14)
x(t5) » gltn,to)xlty) + wltanty)z, (a.15)
x(£5) = o(tantq)x(ty) + wltpnty)z, (a.16)

and substitute Eq. (A.14) fo. x(t1) in Eq. (A.10)

x(t5) = o(tnnt)8(tq ey )xty) + o(ta by Jultyun,)z,
* w(tz’ti)zo
= ¢(t2,to)x(to) + ¢[t2,t1)w(t1,t°)zo * w(t2,c1)zo (A.l?)

Subtract Eq. (4.15)

0 = oty ey Julty to)zg + wltanty)z, - w(taty)z, (n.18)

then the equation for w(tz,t1) is

W(Ea,60) = wltaite) = oltaitydultqute) (.19)

or, in general,

&4




W heun

TP

-

PR TETIAIE WO PRI U ST S TITY G e i

v A~y o

182

W(Egatg) = wltg,gate) = ot ety dultyat,) (4.20)
Eqs. (A.3) and (A.20) are used in conjunction with a
UTOPIA run to produce a file containing the user spacecraft state,

¢ and ¢ matrices for each time step desired during the period of

interest,
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APPENDIX B

THE U-D FILTER

The GPS onboard navigation filter is required to perform
high-precision calculations even though it is operating on a
microprocessor. Since typical spaceborne processors use small word
lengths (16 or 32 bits], techniques must be used to improve the
numerical pre2ision and stability of the filter. Several techniques
have been devised, all using some foru of the square root of the
covariance. Maybeck [1979] and Tapley, et al. [1980] provide
descriptions of the various algorithms, and the analysis by Tapley,
et al., shows that the U-D algorithm by Bicrman [1977) had the
lowest total numerical operations, while potentially maintaining
stability in short word length machines. The U-D algorithm is
recommended for GPS navigation applications, so it was tested here
in the autonomous navigation role. The filter described in this
report includes model ncise compensation (Q matrix) for the reasons
discussed in Section 4.2. While consider covariance techniques are
appropriate for pre-launch studies, the added complexity and core
storage required by the consider parameters make it fnefficient for
real-time application.

As described by Tapley and Peters [1980], the covariance

matrix P(tk) can be factored into
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Pk = Ug Dy, UE (B.l)

where U is an upper triangular unitary matrix (with ones on the
diagonal) and D is a diagonal matrix. It is well known that this
factorization exists and is unique, even though the matrices U and

D are nét unique [Maybeck, 1979, p. 392).

B.1 U-D Propagation via the State Transition Matrix

The matrix P, is then propagated to time t,,; by the
state transition method described in Section 4.,3. 1If the state
noise matrix, Q(T) , is diagonal and is expressed in the state

vector space, then B(1) = I and

t
k+1
T
Pk+'| nd ¢(tk*1'tk]Pk¢T(tk+1'tk) + ¢(tk+‘|pT)Q(T)¢ (tk+1pT)dT
Yk
T \
' T
+I ¢(tk+1tT)Q(T)¢ (tk+1t1)d1 (B'Z)
L
where
oftit,) = atdele,e,) ,  oltpt,) = I (B.3)
and

a(e) = Be(x(t).t) (B.1)

ax(t)  |xx(¢)
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To propagate U and D , form the augmented matrices

and
Dk 0
D, .
K 0 Qrat (B.6)
where
tk+1
Ck+1 - J ¢(tk+1.1)dT (8.7]
ty
Bt = Ty - by (B.8)

Now W, .,y will not be upper triangular, but U,; and D, can

be obtained by a modified Gram-Schmidt orthogonalization on wk+1

weighted by K, such that

= - = =T —T
Pret = Uiaq D Uker = Weay Dy (6.9)

Note that this method requires the integration of the

nxn ¢ equation and the nxn Ck+1 integral, plus the

triangularization of Wk+1 .

B.2 U-D Propagation via 6 and b

To improve the U-D propagation efficiency, Tapley and

Peters propose integrating the U-D form of the matrix Riccati
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F(t) - A)P(E) « P(AT(e) + olt) .

If

and
Q = q/2

then

o] .
»
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ol
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and

TDT + 03w aavpaT gag.

Rearranging,
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(B.10)

(B.11)

(B.12)

(B.13)

(B.14)
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(UD+T2-a0D) 07 «q+E(t) = E(t) (8.17)

The elements of E(t) can be specified to maintain the triangular

form of U during the integration by defining the matrices:

TZaUD (B.18)

METD.+TR-1 (B.19)
Then

M TaEwQ+E (B.20)

For U and U to be upper triangular, there are

n(n-1]/2 unknowns in the skew symmetric matrix E. The products

D and UD are upper triangular creating n(n+1)/2 unknowns.

The whole system (Eq. (B.20) then has ﬂi%;ll + ﬂl%;ll anxn

unknowns, the same as P , which can be uniquely determined. The

.

elements of Eq. (B.20) are

S P S B | Y12 - 0
: M2 mo2 Y13 :
M on-1 L | . ’ 0
"t "t v 0 Man L_uln ‘" Tn-l,nl
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and the solution to this equation for M 1is obtained noting that
M = dan (B.21)
Ca=1,n * Mup Un-1,n " ©n,n-1 (B.22)
Mh,n=1 = ~&n,n-1 (.23)

and that Equations (B.22) and (B.23) can be solved for the two

unknowns M, n-1 and e, p-q - This process then proceeds

backwards up through the M matrix until M and E have been

determined:

T and ) are then obtained from

(B.24)

or
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=T 3 -u-iJ EJJ'
T, 3, A (5.25)
(G=1,c0m)t = 1,...,3)
For 1 = j, ‘Eij =1, s0 Gij = 0 and Eq. (B.24) becomes
4, - ?.(mii ve,) (1= 1,.0.,n) (B.26)

which provides the solution for the diagonal matrix D
Since U 1is upper triangular, terms for which { > j are
zero, thus the only case left is for i < j , which gives

':T a—-ﬁ /4 (B.27)
i3 Myt tiy T Yy T2 33 .

(i=1,...,3-1) (3 =2,....n)

Egs. (B.26) and (B.27) are then used in the derivative subroutine of
a numerical integrator to provide U(t) and D{t) . Note that

UDUT is never formed in the propagation algorithm.

B.3 U-D Measurement Update

The Kalman measurement update to the covariance matrix for

a scalar observation at t = tkH is

P=(I-KH)F =F - KHF (B.28)

SR
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where

K=Ful(a?ul +g)"!

(B.29)
and
. ao(x(ck+,),tk+,)!
- e o) (8.30)
k1) lx %
P can be factored [Maybeck. 1979] as
wiT « 50 - (1/6)CT T W) u U U
=T[5 - (176)(5 O 6T)(F UF u1)T) 7 . (8.31)
where
a = HPHT + R (3.32)
Now, define the vectors
R AT (B.33)
veDra-DbTU 4 (B.34)
and Eq. (8.31] becoumes
uptT « T [5 - (1/0) v vT]T ¢T (8.35)

where v v! and D - (1/a) v vl are now symmetric n x n matrices.

Applying the decomposition algorithm to D - (1/a) v v1 yields a
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unit upper triangular matrix, ut » and a diagonal matrix, D .

Then
wu® ~ (T u*)p*(T u*)T (B.36)
and
U«TUt (.37)
D~ D* (8.38)

The factor 1/a still contains the product HPHT ; however, by
calculating U and D in a recursive manner, the explicit
formation of P is avoided. The method also gives the Kalman gain,
K, in a recursive form. The Kalman state update algorithm then

proceeds as follows:

Set a, xR (8.39)
Compute
n —
fi=n + £’§+1 LP (B.u0)
Vi o= Eii £y (B.u1)
O = ayy + £y vy (B.42)
d = dy ay_q/0 (8.43)
by = v, (B.uy)
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Py = ~f /a,_, (B.45)
4, - Ujg ¢ by by (351,20000011) (B.46)
by = by + uy, ¥ (J=1,2y000,i-1) (B.u7)
The new vector B, is then used to compute the Kalman gain

K = B/a (8.48)
R(tker) = Kltyaq) + K [¥peq = HearR(tyaq)] (B.49)

Note that this formulation still computes the components of the

matrix P = upyuT when it is recursively solving for fi » V4 and

This is true of all square root filters, even though the

product is usually hidden in the recursion relations.
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